A local tracking algorithm for the Central Drift Chamber of Belle II.

Status update - online tracking meeting

Oliver Frost
Deutsches Elektronen-Synchrotron
4th March 2014

$\rightarrow \substack{\text { HELMHOLTZ } \\ \mid \text { ASSOCIATION }}$
> Reminder
> First stage
$>$ Second stage
> Axial segment pair creation
> Reminder

First stage

Second stage
> Axial segment pair creation

Bottom-up in two stages

Combine hits in the same superlayer to segments

Combine segments to tracks

Cuts / weights to be optimized

Stop gaps

There are many positions, where acceptance decisions have to be made. Tune each by comparing to Monte Carlo information.

First stage - productive

$>$ Which facets do belong to the sought tracks?
$>$ Which facets can be considered as the following along the sought track?

Second stage - in progress - filled with MC truth for now

$>$ Which segment triples do belong to the sought tracks?
$>$ Which segment triples can be considered as the following along the sought track?

Cuts / weights to be optimized

Stop gaps

There are many positions, where acceptance decisions have to be made. Tune each by comparing to Monte Carlo information.

First stage - productive

$>$ Which facets do belong to the sought tracks?
$>$ Which facets can be considered as the following along the sought track?

Second stage - in progress

$>$ Which axial segment pairs belong to the same track?
$>$ Which stereo segment inbetween two axial segment is in the same track?
$>$ Which segment triples can be considered as the following along the sought track?

> Reminder

First stage

Second stage

> Axial segment pair creation

Facet creation

Abbildung: Selection facets from cominations of three closeby hits including a right left passage typotheses for each.

Achievable cut quality for facet creation

Cut details

Facet connections

Abbildung: Generate connections of neighboring facets to form the graph edges.

Achievable cut quality for facet connections

Cut details

$$
\begin{aligned}
\text { cut } & =\frac{20}{180} \pi \\
\text { purity } & =56.75 \% \\
\text { efficiency } & =100 \% \\
\text { bkg rejection } & =0 \%
\end{aligned}
$$

Conclusion for the first stage

Conclusion

$>$ The graph of facets and neighbors contains the correct segments
$>$ Achievable cut quality is sufficient and easy to find
> Number of false facets and connections is limited
> Only small number of variables to be considered
$>$ Still some improvement possible, efficiencywise as well as speedwise.

> Reminder

$>$ First stage
$>$ Second stage
> Axial segment pair creation

Axial segment pair creation

Abbildung: Make axial segment pairs by fitting and extrapolating with a two-dimensional circle for each segment

Segment triple creation

Abbildung: Combine axial segment pairs with intermediate stereo segment to segment triples

Segment triple connections

Abbildung：Generate connections of neighboring segment triples to form the graph edges．

> Reminder

$>$ First stage
> Second stage
> Axial segment pair creation

Axial segment pair creation

Abbildung: Make axial segment pairs by fitting and extrapolating with a two-dimensional circle for each segment

Challenge in the axial segment pair creation

Many false axial segment pairs

Input from 100 events (ball park):
$>$ Number of true pairs : 2400
$>$ Number of false pairs : 180000
$>$ Background to signal ratio 75

Many variables to choose from

$>$ Two dimensional fit for each segment
$>$ Extrapolations to begin, center, end of other segment
$>$ Travel distances to beginning, center and end of other segment
$>$ Direction of travel at beginning, center and end of segment
$>$ Length of the segments (looser cut for shorter segments?)
$>$ (Symmetric?) combinations of the former.
> Careful examination of all available variables
$>$ Thoroughly investigation of cut combinations
$>$ Guided by multivariate feature selection techniques (e.g. NeuroBayes)

Example - good variable

Abbildung: Well behaved distance of extrapolation to center of following segment.

Example - variable with unexpected behaviour

Abbildung: Travel distance from first hit to first hit of correct axial segment pairs in is negative at times.

Current cut criterion

Accept if all are fulfililed

$>$ Second segment lies after first segment as seen from first fit.
$>$ First segment lies before second segment as seen from second fit.
$>$ Second segment has increasing travel distance as seen from first fit.
$>$ First segment has increasing travel distance as seen from second fit.
$>$ Extrapolation should not lie far apart ($<7 \mathrm{~cm}$)
$>$ Angle of travel distances not to large ($<2 \mathrm{rad}$)

Comment

$>$ All cuts seem reasonable wide.
$>$ Still signal is lost due to the negative signs in the travel distances, where it should not be.

Achievable cut quality for axial segment pair connections

Cut details

$$
\begin{aligned}
\text { purity } & =23.78 \% \\
\text { efficiency } & =88.03 \% \\
\text { bkg rejection } & =96.16 \%
\end{aligned}
$$

Conclusion for the second stage

Conclusion

$>$ Achievable cut quality is much lower than expected,
$>$ due to the high background in the sample.
$>$ Though all cuts seem reasonable 12% of the signal are lost.
$>$ Still three times more wrong pairs compared to true pairs remain after the cut.
$>$ However is this a purity level we can build upon?

