A local tracking algorithm for the Central Drift Chamber of Belle II.

Status update - online tracking meeting

Oliver Frost Deutsches Elektronen-Synchrotron 4th March 2014

- > First stage
- > Second stage
- > Axial segment pair creation

Second stage

> First stage

> Second stage

Bottom-up in two stages

Combine hits in the same superlayer to segments

Combine segments to tracks

Reminder

First stage

Second stage

Stop gaps

There are many positions, where acceptance decisions have to be made. Tune each by comparing to Monte Carlo information.

First stage - productive

- > Which facets do belong to the sought tracks?
- > Which facets can be considered as the following along the sought track?

Second stage - in progress - filled with MC truth for now

- > Which segment triples do belong to the sought tracks?
- > Which segment triples can be considered as the following along the sought track?

Second stage

Stop gaps

There are many positions, where acceptance decisions have to be made. Tune each by comparing to Monte Carlo information.

First stage - productive

- > Which facets do belong to the sought tracks?
- > Which facets can be considered as the following along the sought track?

Second stage - in progress

- > Which axial segment pairs belong to the same track?
- > Which stereo segment inbetween two axial segment is in the same track?
- > Which segment triples can be considered as the following along the sought track?

Reminder

Second stage

> First stage

> Second stage

Facet creation

Abbildung: Selection facets from cominations of three closeby hits including a right left passage typotheses for each.

Reminder

First stage

Second stage

Reminder

First stage

Second stage

Facet connections

Abbildung: Generate connections of neighboring facets to form the graph edges.

Reminder

First stage

Second stage

Conclusion

- > The graph of facets and neighbors contains the correct segments
- Achievable cut quality is sufficient and easy to find
 - > Number of false facets and connections is limited
 - Only small number of variables to be considered
- > Still some improvement possible, efficiencywise as well as speedwise.

Second stage

> First stage

> Second stage

Axial segment pair creation

Abbildung: Make axial segment pairs by fitting and extrapolating with a two-dimensional circle for each segment

Reminder

First stage

Second stage

Segment triple creation

Abbildung: Combine axial segment pairs with intermediate stereo segment to segment triples

Reminder

First stage

Second stage

Segment triple connections

Abbildung: Generate connections of neighboring segment triples to form the graph edges.

Reminder

First stage

Second stage

> First stage

> Second stage

Axial segment pair creation

Abbildung: Make axial segment pairs by fitting and extrapolating with a two-dimensional circle for each segment

Reminder

First stage

Second stage

Many false axial segment pairs

Input from 100 events (ball park):

- Number of true pairs : 2400
- > Number of false pairs : 180000
- Background to signal ratio 75

Many variables to choose from

- Two dimensional fit for each segment
 - Extrapolations to begin, center, end of other segment
 - > Travel distances to beginning, center and end of other segment
 - > Direction of travel at beginning, center and end of segment
- Length of the segments (looser cut for shorter segments?)
- > (Symmetric?) combinations of the former.

- Careful examination of all available variables
- Thoroughly investigation of cut combinations
- Guided by multivariate feature selection techniques (e.g. NeuroBayes)

Abbildung: Well behaved distance of extrapolation to center of following segment.

Reminder

First stage

Second stage

Abbildung: Travel distance from first hit to first hit of correct axial segment pairs in is negative at times.

Reminder

First stage

Second stage

Accept if all are fullfilled

- > Second segment lies after first segment as seen from first fit.
- First segment lies before second segment as seen from second fit.
- Second segment has increasing travel distance as seen from first fit.
- First segment has increasing travel distance as seen from second fit.
- Extrapolation should not lie far apart (< 7 cm)</p>
- Angle of travel distances not to large (< 2 rad)</p>

Comment

- > All cuts seem reasonable wide.
- Still signal is lost due to the negative signs in the travel distances, where it should not be.

Second stage

Achievable cut quality for axial segment pair (

Reminder

First stage

Second stage

Conclusion

- > Achievable cut quality is much lower than expected,
- > due to the high background in the sample.
- Though all cuts seem reasonable 12% of the signal are lost.
- Still three times more wrong pairs compared to true pairs remain after the cut.
- However is this a purity level we can build upon?