

Progress in Porting CERN UNICOS to EPICS

Schaltungstechnik und Simulation Michael Ritzert michael.ritzert@ziti.uni-heidelberg.de

10.04.2014

Introduction

• The actual control of the cooling plant(s) is done in the PLC.

We are not involved in the development of this.

- EPICS/CSS will provide the supervision layer for the PLC, this is handled by PVSS/WinCC OA at CERN.
- CERN uses their UNICOS framework for the SC development.
 - Relevant functionality: List all hardware connected to the PLC in an Excel table, and generate both PLC code templates and PVSS databases from that.
 - Includes templates for control GUIs and animated widges for schematic views.

Last Week

- Meeting at CERN with UNICOS developers and IBBelle PLC developers.
 - Bogdan Lobodzinski and Michael Ritzert present for VXD.
- Discussion on UNICOS SCADA requirements.
- Hands-on tests with the actual Schneider PLC hardware.
 - First connection between IBBelle-like hardware and EPICS.

UNICOS ⇔ SCADA Interface (for Schneider PLC)

- Combination of plain modbus, and TSPP (time-stamp push protocol, CERN-specific) on top of modbus.
- TSPP is not required to operate the PLC! Advantages when it is used:
 - heartbeat signal
 - detection of short pulses on status bits

- At CERN, UNICOS outputs a database for PVSS.
- This is a text file with one line per device, containing all information.
- For EPICS, one line corresponds to a number of EPICS DB records.
- The text file is created by a number Python scripts that can easily be modified.
- It should be not problem at all to adapt the output format for EPICS.

- A hand-written EPICS database has been used in this first test.
- No actual hardware connected to the PLC.
- Just a single device (a valve) configured in EPICS.

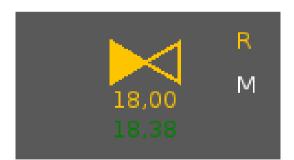
10 PVs to represent the various registers in the PLC.

- OPI resembling the UNICOS "faceplate" (dialog to control the device) and OPI widget following the UNICOS widget specifications.
- No problems observed with the modbus connection.
- Sending a command to the PLC worked in the first try.
- Very successful proof of principle for the planned implementation.
- The PLC remains at CERN to allow us to run PVSS in parallel to compare the behavior with our EPICS implementation.

"Faceplate"

- What is visible is working!
- Still some minor issues with disabling buttons when they are ineffective. To be implemented in the CSS OPI Editor.

Status Trends Debug				
Status	Operation Mode	es	Alarms	
Position 18,0 %	Inh	On	Full Stop Interlock	
Limit On 90,0 %	Auto	1	Temporary Stop Interlock	1
Limit Off 10,0 %	Manual 🖉		Start Interlock	
	Forced		Alarm	
			Alarm Not Ack.	
	Local	- F	Warnings	
Failsave On / Opened 🛛 🔎	Hardware Local	1	Event Masked	
			Allow restart needed	
Ranges	Requests		Alarm blocked	
Range Max. 100,0 %	Auto	18,1 %	I/O Error	
Range Min. 0,0 %	Manual	0,0 %	I/O Simulated	
		18,4 %	Manual <> Auto Position Warning	
	Active	10,4 70		
On Off Set Value	Inc. Dec.	A	low Restart	
Auto Mode Manual Mod	e Forced Mode	A	Ack. Alarm	


LS Schaltungstechnik & Simulation

OPI Widget

• Implemented in Java as an Eclipse plugin to CSS.

LS Schaltungstechnik & Simulation

A lot of TODOs

Adapt the UNICOS script to output in EPICS format.

- Fairly easy
- Design more faceplates.
 - Some trivial, some requiring still-to-be-developed widgets.
- Extend the script to also output the archiver configuration.
 - Also quite easy.
- Integrate the PLC alarm handling with the CSS alarm handling.
 - No good idea, yet, especially regarding acknowledging alarms.
- Implement TSPP at least far enough to handle the heartbeat.
 - Still lacks documentation, but probably < 1 week of work.
 - Probably means extending the EPICS modbus driver.
- Understand the concept of recipes for the PLC and maybe implement the interface.

Conclusions

- The first test with IBBelle-like hardware went extremely well.
- The concept to integrate the PLC with the rest of our SC system is sound.
- The biggest open point is the alarm system integration.
- The rest is "just work". But far less than the few man years first estimate. In principle, we could run within a few weeks with only few shortcomings.

Thank you!