Requirements from the detector

• DH1k:

- 512x512 sub detector
- Double folded readout (2x128, single side)
- 1k frame rate, 8-10bit ADC

• DH80k:

- 512x512 pixel sub detector
- four folded readout (4x64, double side)
- 80k frame rate, 8 bit adc
- mem for 256x64x100 8bit

Design constraints

- digital interfaces as reference from:
 - DCD-Bv2
 - SwitcherB18 v2.0
- Design focus on DH80k, at the end possible modification for DH1k use

Interface to dcd/switcher

- 8x8bit x32 dcd2movie time mux bus
- 8x2bit x32 movie2dcd time mux bus for pedestals (opt. In case of dcd internal mem)
- conf and debug via jtag
- switcher seq (SwitcherB)
- DCD Clk 320MHz and Sync_Reset

interface to daq

- max 6x LVDS DAQ downstream (2x for DH80k)
- JTAG for slow control
- Trigger signal from/to sequenzer

parts

- 80MHz 4x analog PLL (320MHz out) for dcd (pipelined?)
- JTAG core with external "slave" chains
- DCD interface (data "descramble") (pipelined?)
- Commercial dual port sram block (1024x80@400MHz)
- Switcher Seq
 - Window mode
 - Loop seq: 1xFullframe and xSmallframes?

DMC internal

switcher sequencer

- deep and width memory array vs. loosely coupled stat machines
 - waste of memory bits for static signals in long seq.

Unflexible for "independent" sequences

 one node for each each output signal (internal/external)

 each node has 2 loop counter, 5 waitFor/int maskable inputs stack with depth for 4 reg sets (call depth) simple instruction set

JTAG "slave" chains

SW0

- 2 selectable "slave" chains per DMC
- cascaded operation, isolation of inoperable units in higher hierachy possible

SW0

Whats next?

- Verification of the dcd interface with an dcd+dcdro via FPGA emulation
 - COB PCB for IgelLight DDR3B slot
 - Which voltages are needed to drive at least the digital parts of the dcd?
 - dcd+dcdro hybrid available ?
- Test of Switcher interface

DMC timeline 20140629

- with start of chip assembly from the current design point (without hardware verification to DCDB/RO and SwitcherB)
 - miniasic prototype (tapeout deadline 17.09.2014, two per year) with reduced (<half) interface to dcd, limited (~10) framebuffer, wirebond, 1,8^2mm^2 (20K€)
 - 2 months fabrication time
 - End 2014 prototype setup for testing ready
 - DMC full chip tapeout (May-Jun15, one per month)
 - 2-3 months fabrication time (bumps)

DCDEMC or DCD+DMC?

- reduced amount of bump bonded asic's 12/16 (25%)
 - reduced area, costs (~1k/asic), less interconnects
- possible crosstalk from driver power domain to adc and frontend
 - reason for dcd+ro, weak driver in present dcd
- external stearing of the switchers needed (cabling/connectors/firmware for IgelLight/Seq)

- identical interface for DH1K and DH80K on the detector
 - less work on firmware (reuse/sharing of components)
- needs a DMC already at the DH1K assembly mile stone

(pro are also the cons of the opposite option)

DH1K options

- DCDB v2: rotation of the data bit vector by 90° (change from byte parallel to bit serial transmission for the different channels) via JTAG config bit
- 5x LVDS + 1 spare for downstream
- DCD clk?