Update in the microchannel cooling simulations of DEPFET vertex detector for a future linear e+ e- collider

I. Garcia M.A. Villarejo M. Vos

INSTITUTO DE FÍSICA CORPUSCULAR

Summary

- 1. Test vs simulation
- 1.1 Test
- 1.2 Simulation
- 1.3 Comparison
- 2. CO2 as an option?
- 3. Results with other coolants
 - 3.1 Coolants properties
 - 3.2 Coolants comparison
 - 3.3 Simulation results
- 4. Future work
- 5. Conclusions

1.1 Test with 5W and water as coolant

Test 1: 5W

3

Update in the microchannel cooling simulations of DEPFET vertex detector for a future linear e+ e- collider

1.1 Test with 5W and water as coolant

DEPFET

Test 2 and 3: 1.5W with different volumetric flow

Boundary conditions: Q_in

Q_in_DCD=5W

Update in the microchannel cooling simulations of DEPFET vertex detector for a future linear e+ e- collider

Boundary conditions: Q_out

T_out=at 297.15K, 299.15K and 304.45K h=5 [W m^-2 K^-1]

Update in the microchannel cooling simulations of DEPFET vertex detector for a future linear e+ e- collider

M.A. Villarejo

Boundary conditions: V_in&V_out

V_in=2.15m/s (0.1 l/h) and 0.43m/s (0.02 l/h) Fluid: water at 297.15K, 299.15K and 304.45K in the

M.A. Villarejo

Mesh

5,15M elements divided mostly in 30% Hex8 and 70% Tet4

8

Update in the microchannel cooling simulations of DEPFET vertex detector for a future linear e+ e- collider

M.A. Villarejo

Mesh: detail

5,15M elements divided mostly in 30% Hex8 and 70% Tet4

DEPFET

9

Update in the microchannel cooling simulations of DEPFET vertex detector for a future linear e+ e- collider

M.A. Villarejo

Results: simulation of the test 1 (slide 3)

T_water_out=308.6K Q_water=Cp*m*ΔT=4186*2.15*0.00038*0.00034*997*(308.6-304.4)= 4.87W 97% of the 5W is absorbed by the cooling flow

Update in the microchannel cooling simulations of DEPFET vertex detector for a future linear e+ e- collider

M.A. Villarejo

Results: simulation of the test 2 and 3 (slide 4)

1.3 Comparison between tests and simulations

Test 1: 5W (0.11/h)

12

Update in the microchannel cooling simulations of DEPFET vertex detector for a future linear e+ e- collider

1.3 Comparison between tests and simulations

Test 2 and 3: 1.5W with different volumetric flow

- Initial conditions: the same (297.15K and 299.15K)

- Final temperature: Δ of 4K between tests and simulation (310.15K-306K and 303.15K - 298.9K)

- ΔT=7K with different flows in tests and simulations Update in the microchannel cooling simulations of DEPFET vertex detector for a future linear e+ e- collider M.A. Villarejo

1.3 Comparison between tests and simulations

Test 1, 2 and 3: 5W vs 1.5W

LHCb detectors op. Temperature ~ -40°C

ATLAS IBL detectors op. Temperature ~ -20°C

DEPFET detectors op. Temperature ~ +25°C

DEPFET detectors op. Temperature ~ +25°C

DEPFET detectors op. Temperature ~ +25°C

If P=65 bar (6.5MPa)

- Expensive

- Dangerous

- Pure water is better option in heat transfer (Cp, λ).

- Extra mechanical stress in the microchannels

- Biphase fluid

DEPFET detectors op. Temperature ~ $+25^{\circ}C$

If P=65 bar (6MPa)

About 600K elements 75% Tet10 25% Hex20

19

Update in the microchannel cooling simulations of DEPFET vertex detector for a future linear e+ e- collider

M.A. Villarejo

DEPFET detectors op. Temperature ~ +25°C

SF=Max. Stress allowed by the material / Simulated stress

DEPFET

20

Update in the microchannel cooling simulations of DEPFET vertex detector for a future linear e+ e- collider

M.A. Villarejo

3.1 Simulations with other coolants:

main properties

Fluid (21-25°C) 1 atm	Pure Water	Air	PGW2080	PGW6040	EGW2080	EGW6040
Cp [J kg^-1 K^-1] ¹	4181.7	1004.4	4077.164	3537.17	3809.26	3047.408
λ [W m^-1 K^-1] ¹	0.6069	2.61E-02	0.49305	0.32524	0.49824	0.34946
ρ [kg m^-3] ¹	997.0	1.185	1018.56	1047.52	1034.88	1098.56
μ [kg m^-1 s^-1] ¹	8.899E-04	1.831E-05	1.95E-03	9.51E-03	1.61E-03	5.17E-03
Relative permittivity ²	80.2	1.00059	PG pure: 32		EG pure: 37.7	
$X_0 \text{ [mm]}^3$	360.7	309367.09	364.4	371.8	357.7	351.6

PGW2080: 20% Propylene Glycol, 80% Pure Water

PGW6040: 60% Propylene Glycol, 40% Pure Water

EGW2080: 20% Ethylene Glycol, 80% Pure Water

EGW2080: 60% Ethylene Glycol, 40% Pure Water

¹Manufacturer technical data sheet

²www.matweb.com

³own calculation

3.2 Coolants Comparison: PGW vs EGW

Advantages PGW

- Less dense

- High Cp
- No toxic
- Radiation length
- Low relative electric permittivity
- Environmenta friendly

Advantages EGW

- Less viscous

- High thermal transfer coefficient λ
- More stable with temperature differences
- Better understood (more history)

3.2 Coolants comparison: Water vs PGW&EGW

Advantages Desionized Water

- Cheaper

- Higher Cp
- Higher thermal transfer coefficient $\boldsymbol{\lambda}$
- Less viscuous $\boldsymbol{\mu}$

Advantages PGW&EGW

- Less corrosive
- Low relative electric permittivity
- Higher boiling point and lower freezing point
- Higher Vapor Pressure (easier to evaporate)
- Less Denser

3.3 Coolants simulation result

3.3 Coolants simulation result

3.3 Coolants simulation result with current geometry

High vol. flow (2.15m/s)

- More heat dissipated
- High ΔT through the sensor
- High cross section
- High material budget

Low vol. flow (0.1-0.2m/s)

- Less heat dissipated

- Homogeneous T through the sensor

- Posibility to reduce cross section increassing the mass flow

- Less cross section less material

3.3 Coolants simulation result with current geometry

27

Update in the microchannel cooling simulations of DEPFET vertex detector for a future linear e+ e- collider

M.A. Villarejo

3.3 Coolants simulation result with current geometry

High vol. flow (2.15 m/s)

- More heat dissipated

- High ΔT through the sensor

- High cross section

- High material budget

Low vol. flow (0.1-0.2 m/s)

- Less heat dissipated

- Homogeneous T through the sensor

- Posibility to reduce cross section increassing the mass flow

- Less cross section less material

Proposed solution:

V: $0.15m/s \Delta T$ near to $0 \rightarrow$ we can save material (Si and fluid if we decrease the cross section) but to achieve the DT through the sensor near to $0 \rightarrow$ rise up the volumetric flow to 2,15m/s then usage of PGW6040 which has better thermal performance

4 Microchannel alternative geometry

Update in the microchannel cooling simulations of DEPFET vertex detector for a future linear e+ e- collider

4 Microchannel alternative geometry

30

Update in the microchannel cooling simulations of DEPFET vertex detector for a future linear e+ e- collider

M.A. Villarejo

5. Future work

- Try to proximate (even more) simulations with test
- Material properties dependence with temperature (Si, water,...)
- Refine mesh
- Thermal stress and deformations
- Multiphase simulations (if needed)

- Simulations with more detailed elements (volume in switches, interface layer between chips and detector, ...)

- Optimize the microchannels geometry

6. Conclusions

- Simulations match with tests
- CO2 and gas (air) is not an option
- Different liquids proposed as options with its advantages and disadvantages
- At 297-298K temperature homogeneity on the sensor
- PGW6040 proposed as solution for 2,15 m/s reducing the material budget and obtaining a homogeneous T along the sensor

