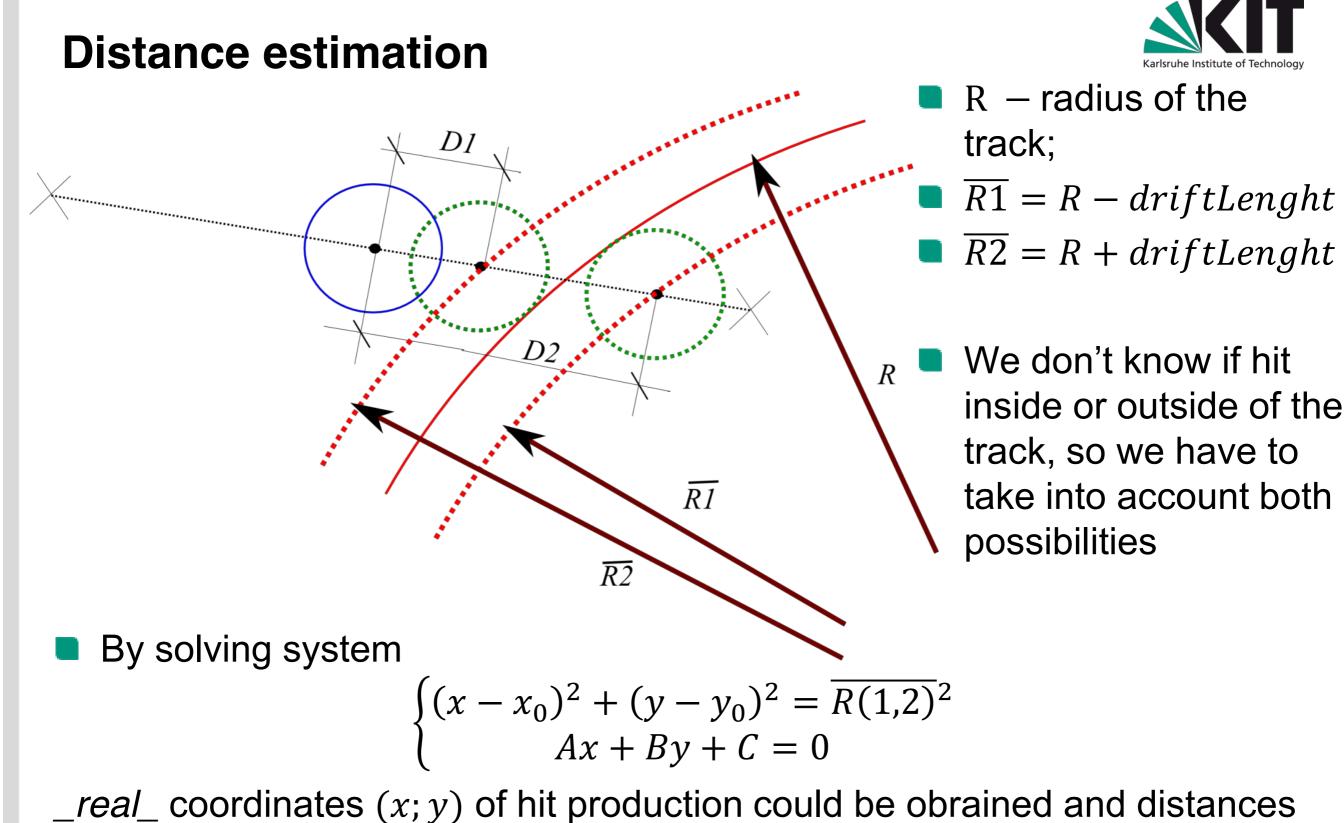
F2F tracking meeting report

https://indico.mpp.mpg.de/conferenceTimeTable.py? confld=2966#20140929


Participants (+ Tobias, Thomas, Doris & CDC team remotely)

Current registrants (14)

<mark>≢name</mark> BILKA, Tadeas	institution Charles University Prague	city Prague	country/region CZECH REPUBLIC	
BOZEK, Andrzej	INP Krakow	Krakow	POLAND	
CASAROSA, Giulia	INFN - Pisa	Pisa	ITALY	
FROST, Oliver	DESY	Hamburg	GERMANY	
FRÜHWIRTH, Rudi	HEPHY Vienna	Wien	AUSTRIA	
HECK, Martin	KIT	KA	GERMANY	
KODYS, Peter	Charles University	Prague	CZECH REPUBLIC	
KVASNICKA, Peter	Charles University in Prague	Prague	CZECH REPUBLIC	
LANGE, Sören	University Giessen, II. Physik	Giessen	GERMANY	
LETTENBICHLER, Jakob	HEPHY	Vindobona	AUSTRIA	
PAOLONI, Eugenio	INFN & amp; University of Pisa	Pisa	ITALY	
SCHNELL, Michael	University of Bonn	Bonn	GERMANY	
TRUSOV, Viktor	KIT	Karlsruhe	GERMANY	
VALENTAN, Manfred	MPP	Munich	GERMANY	

Topics covered during the meeting

- CDC:
 - track finders status (Oliver, Viktor),
 - simulation and hit reconstruction (report from the CDC software group).
- Track fitting:
 - Genfit status (Tobias),
 - magnetic field model CPU footprint (Seunguk Cheon, Doris Kim).
- VXD tracking & alignment (Jakob, Rudi, Tadeas, Peter, Peter).
- Software quality assurance.
- PXD data reduction and clusters rescue (Michael, Giulia, Sören + ...)

__real_ coordinates (*x*; *y*) of hit production could be obrained and distances *D*1 and *D*2 could be calculated

29.09.2014

Magnetic field CPU consumption in our simulation and reconstruction

- Our present default model is an axial symmetric B field:
 - B has only radial and longitudinal non vanishing components.
 - The radial component is fixed by B_z + Maxwell equations.

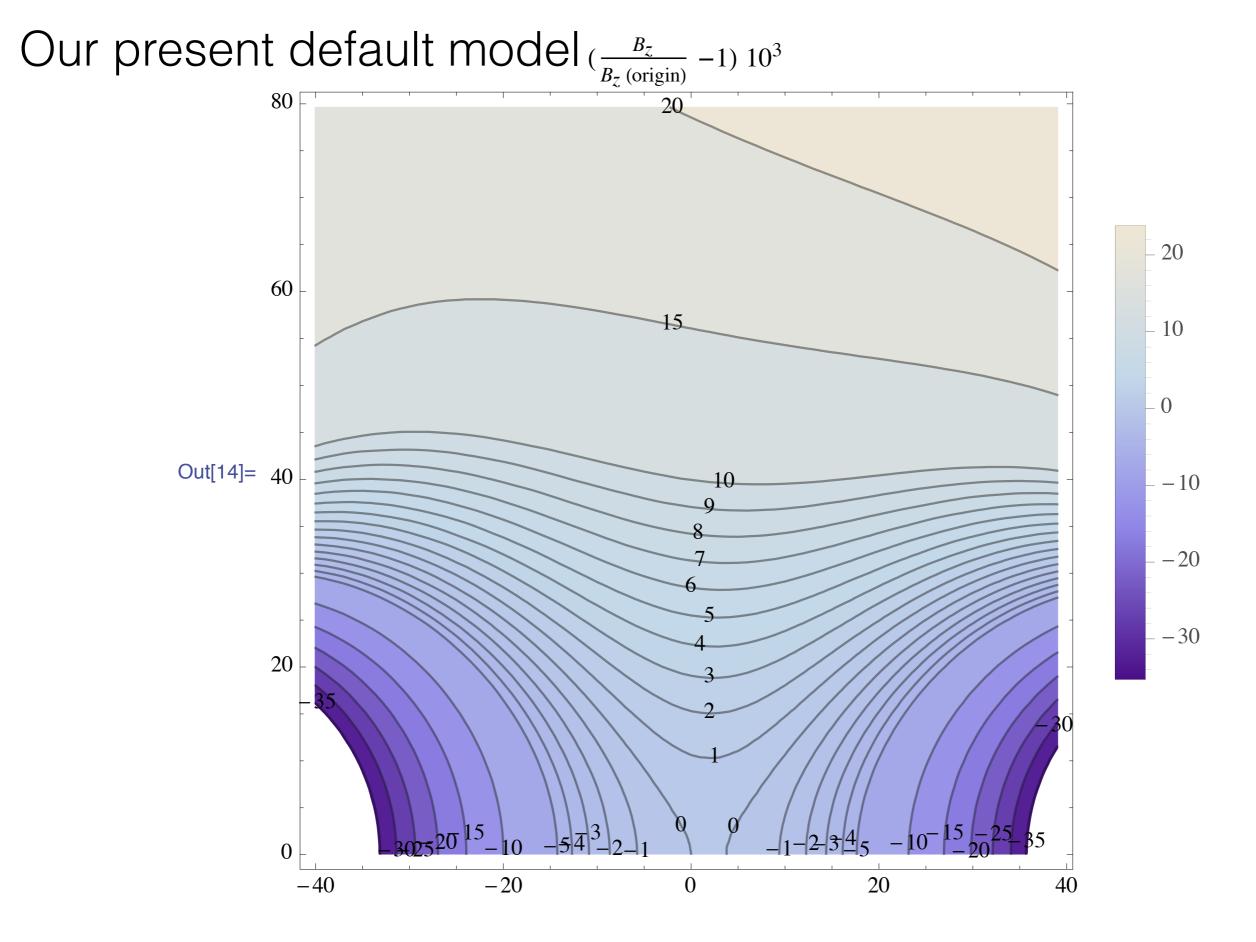


Figure 1: B_z inhomegeneity (‰) as a function of z (cm) and r (cm). Pisa, 1 X 2014

- The B field evaluator caches the previous evaluation point and field.
 - If the the evaluation point distance w.r.t. the previous one exceeds a given threshold the evaluation is performed again.

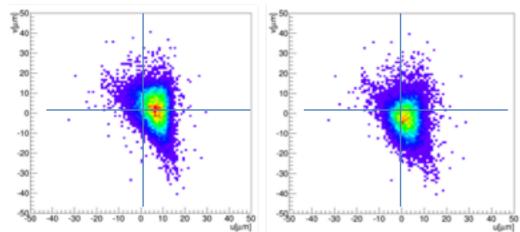
	Default	0.1cm	0.5cm	1.0cm	
FullSim	33.57 ± 31.00	24.30 ± 23.01	25.06 ± 28.36	21.87 ± 14.75	High momentu
1,000 call					•
Total	103.07 ± 34.84	94.49 ± 84.90	99.77 ± 32.55	92.24 ± 18.84	sample
1,001 call					
	Default	0.1cm	0.5cm	1.0cm	
FullSim	401.80 ± 93.94	306.28 ± 63.21	288.53 ± 56.52	$\begin{array}{r} \textbf{265.92} \pm \\ \textbf{48.95} \end{array}$	Low momentum
200 call					
Total	530.55 ±	437.91 ±	$427.58 \pm$	$396.96\pm$	sample
	109.14	82.42	76.76	69.96	
200 call	109.14	82.42	76.76	69.96	

- Main message: we are spending a significant fraction of CPU time in B field evaluation and we should try to optimize the code.
- Seunguk's showed also that 1.0 cm cut is too coarse for precise simulation of soft particles.

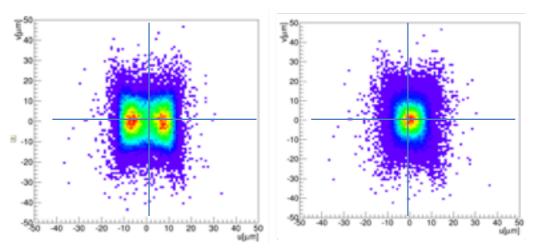
Pisa, 1 X 2014

SVD hit handling

Ever since we switched to the DAF as default, SVD hits were not dealt with correctly:

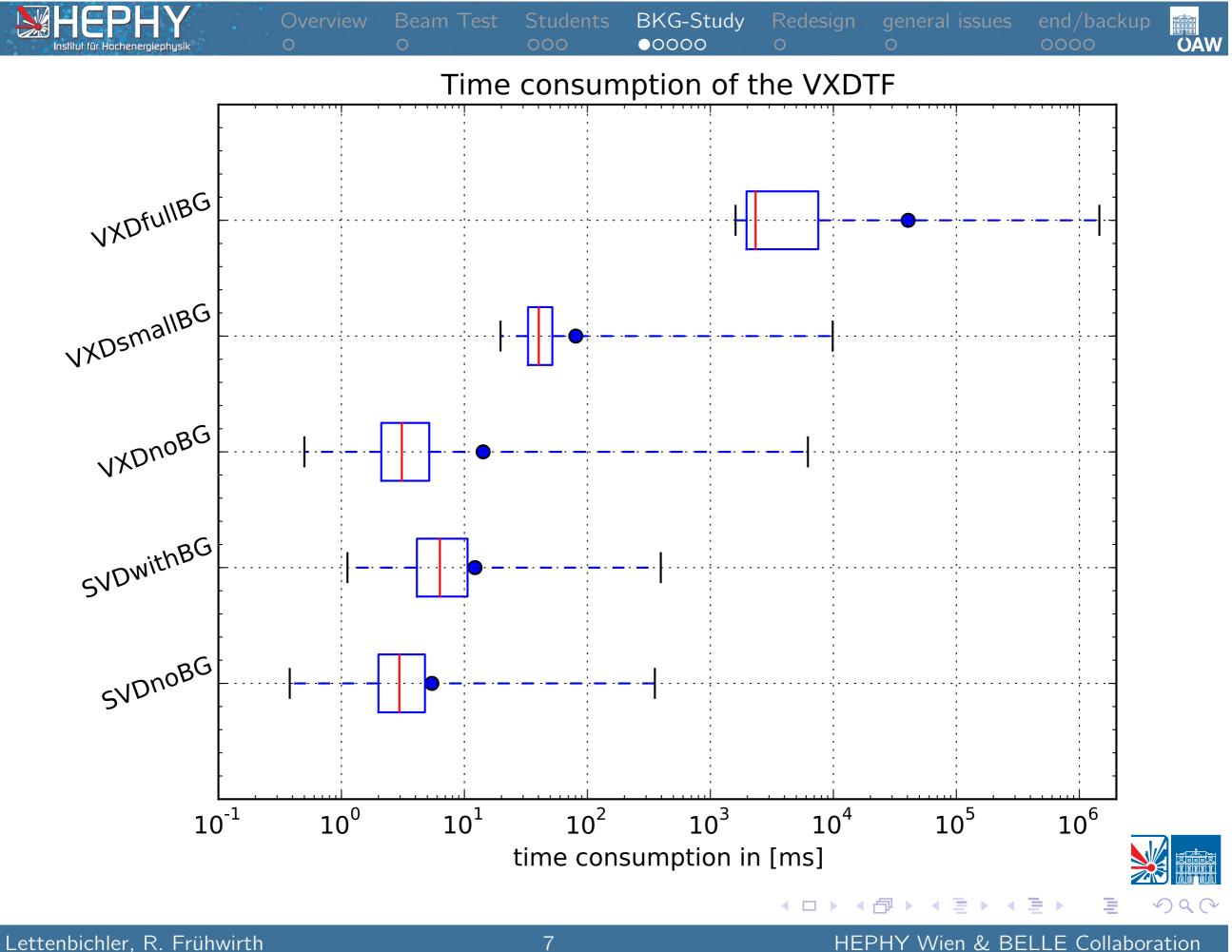

- \blacktriangleright U and V hits were combined and thus competing
- therefore we used only half the information: essentially the direction with the higher residual was thrown out

In the process of dealing with this, I found an error in the handling of the wedged sensors (double counting of angle of wedged strips, present since the switch to GENFIT2), which didn't have an effect until I un-combined U and V hits.

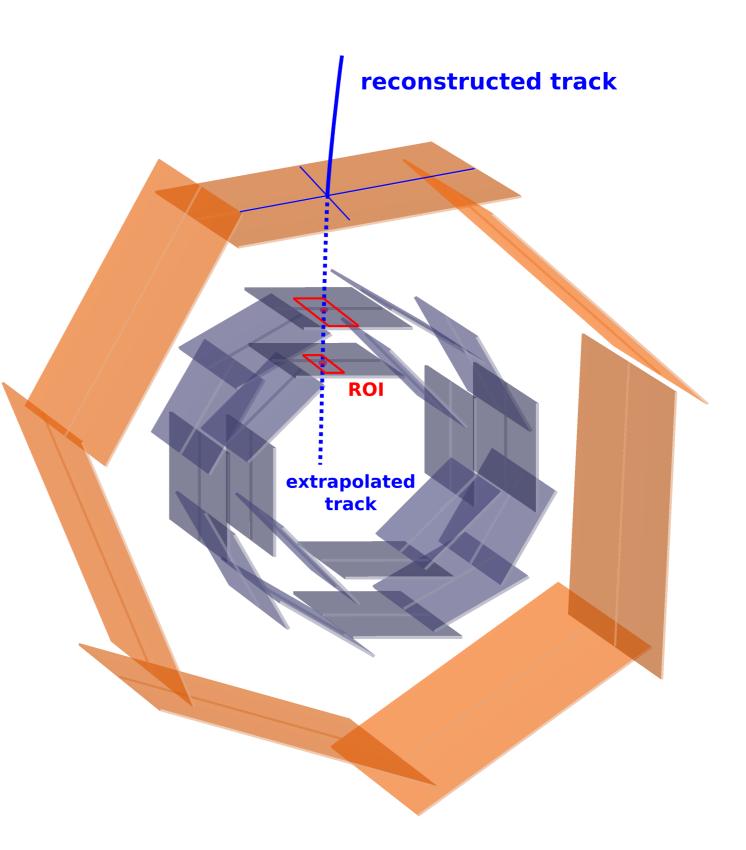

- ► I fixed both issues
- the fix for the DAF is not yet live, because Tadeas needs to update the GBL interface, and his master's exams were more important

Using cluster shape to improve of hit position

- The 3-pixel "L"-shaped clusters are the simplest and most common case where such a bias correction would be desirable.
- For these clusters, the center-of-gravity estimate is biased by about 10% of pixel size, comparable to the typical RMS error of the position estimate. Therefore, correction of the bias highly desirable.
- We show that adding a fixed (pixel noise dependent) charge to the pixel with zero signal in the 2x2 matrix can significantly improve the center-ofgravity estimate of hit position for such clusters. Adding the fourth pixel with the signal of 1.3 x ENC improved position RMS error from 7.4 microns to 4.7 microns in R-phi, and reduced position from 5 to 2 microns.


Residual plot of "L" shape in one orientation before (left) and after (right) correction

Residual plot of "L" shape in all orientation before (left) and after (right) correction

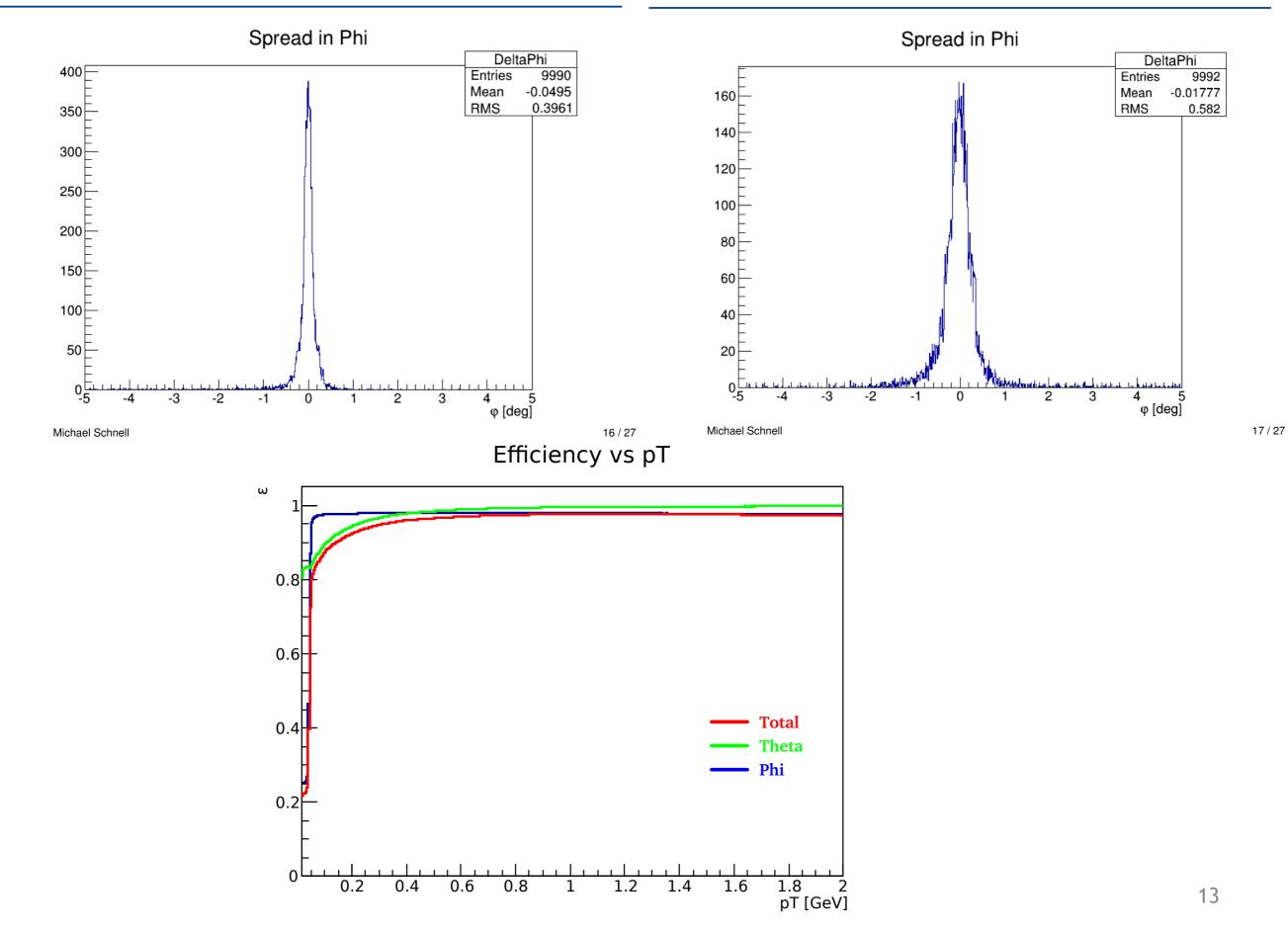


Track reconstruction in the VXD

- Jakob is the main player: development, test, debug.
 - Jakob is a PhD student (exams, PhD thesis due in ~ 1 year from now)
 - We do need someone taking responsibility for this crucial part of the reconstruction.
 - The software is not going to stay forever without someone taking care of it.
 - By the way the same do apply for 99% of our tracking software.

Data Reduction Idea with SVD Tracking

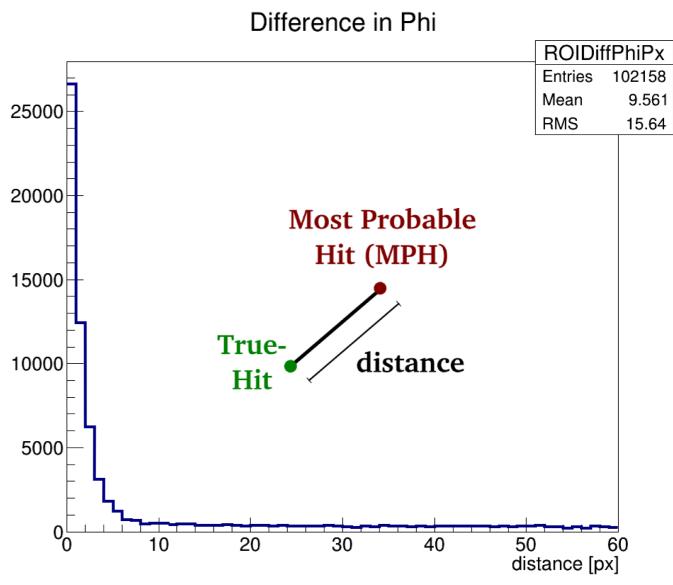
- Complementary approach with two systems to save as much physics data as possible
- HLT: Track reconstruction based on sector-neighbour finding and neural network
- DATCON: Fast FPGA-based track reconstruction system using the Fast Hough Transformation



Angle Spread in Phi e⁻, e⁺ @ 2 GeV

universität**bonn**

Angle Spread in Phi e⁻, e⁺ @ 60 MeV



Data Reduction Performance

- Flexible ROI size from 8x16 px up to 12x160 px (depending on momentum estimated by r)
- Curler extrapolation still missing! (only two Most Probable Hits (MPH) per track)

- Total ROI efficiency (number of primary track hits on the PXD) Caveat emptor: flat energy spectrum of the sample (50 MeV-39eV) inside ROI): 95.2 percent
- Data Reduction Factor (DRF): 45

Michael Schnell

Execution Time

Name	Calls	Memory(MB)	Time(s)	Time(ms)/Call
EventInfoSetter	10001	 0	0.18	0.02 +- 0.00
EventInfoPrinter	10000	0	0.48	0.05 +- 0.01
EvtGenInput	10000 j	-481 İ	16.69	1.67 +- 12.23
Gearbox	10000	0	0.14	0.01 +- 0.00
Geometry	10000	0	0.12	0.01 +- 0.00
FullSim	10000	-997	14165.42	1416.54 +- 397.46
PXDDigitizer	10000	0	108.95	10.89 +- 10.49
PXDClusterizer	10000	0	3.34	0.33 +- 0.05
SVDDigitizer	10000	-120	157.46	15.75 +- 4.31
SVDClusterizer	10000	0	65.26	6.53 +- 1.20
CDCDigitizer	10000	0	69.74	6.97 +- 2.99
TOPDigitizer	10000	0	11.79	1.18 +- 0.56
ARICHDigitizer	10000	0	0.53	0.05 +- 0.03
ECLDigitizer	10000	2	25.76	2.58 +- 0.57
BKLMDigitizer	10000	0	615.85	61.58 +- 36.51
EKLMDigitizer	10000	0	274.72	27.47 +- 36.39
TrackFinderMCTruth	10000	0	4.36	0.44 +- 0.10
VXDTF	10000	9	97.09	9.71 +- 86.97
MCTrackMatcher	10000	0	3.68	0.37 +- 0.09
PXDDataReduction	10000	1799	16890.74	1689.07 +-3551.01
PXDDataRedAnalysis	10000	0	15.14	1.51 +- 0.72
PXDdigiFilter	10000	0	34.32	3.43 +- 0.47
PXDClusterizer	10000	0	2.03	0.20 +- 0.04
VXDTF	10000	19	99.44	9.94 +- 88.55
RootOutput	10000	22	20.45	2.04 +- 34.58
Total	======================================	253	32694.48	3269.12 +-3599.31

- executed @ KEK
- no parallelisation
- compiled in *opt* mode

 \simeq

~ 76 MCParticles per event

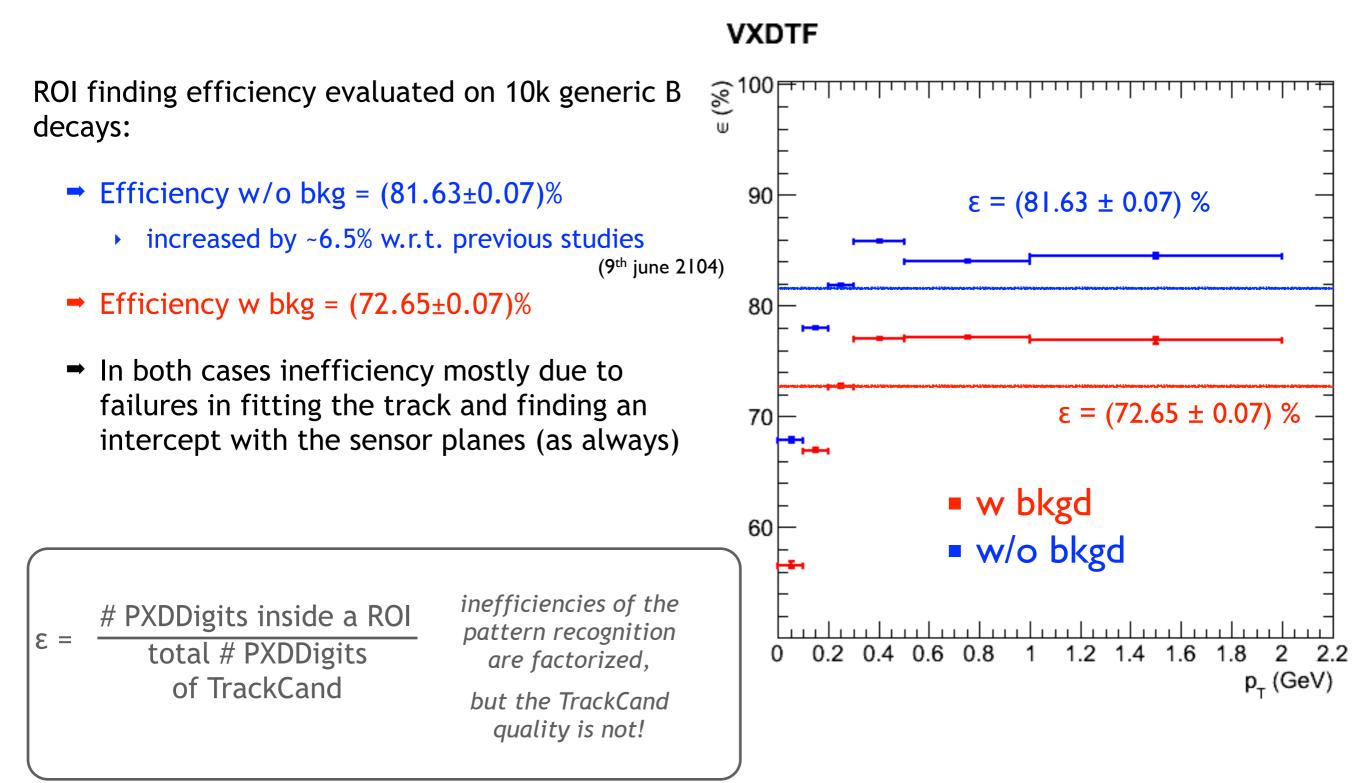
~ 8.9 TrackCand per event

Execution Time With Background

Name	Calls	Memory(MB)	Time(s)	Time(ms)/Call
EventInfoSetter	10001	0	0.18	0.02 +- 0.01
EventInfoPrinter	10000	0	0.75	0.08 +- 0.38
EvtGenInput	10000	0	16.13	1.61 +- 9.69
Gearbox	10000	0	0.14	0.01 +- 0.00
Geometry	10000	0	0.12	0.01 +- 0.00
FullSim	10000	-45	14358.99	1435.90 +- 388.75
BeamBkgMixer	10000	-609	2478.12	247.81 +- 111.88
PXDDigitizer X45	10000	-58	4961.45	496.15 +- 62.86
PXDClusterizer	10000	0	42.53	4.25 +- 0.46
SVDDigitizer XI5	10000	-14	2317.87	231.79 +- 27.48
SVDClusterizer	10000	1	121.51	12.15 +- 1.66
CDCDigitizer X9	10000	2	604.39	7+- 6.52
TOPDigitizer	10000	-64	30.05	3.00 +- 0.65
ARICHDigitizer	10000	0	0.85	0.09 +- 0.03
ECLDigitizer	10000	4	690.37	69.04 +- 3.86
BKLMDigitizer	10000	1	1247.49	124.75 +- 41.62
EKLMDigitizer	10000	0	876.91	87.69 +- 41.93
TrackFinderMCTruth	10000	0	5.13	0.51 +- 0.13
VXDTF X3.5	10000	10	364.76	36.48 +- 250.32
MCTrackMatcher	10000	0	5.67	0.57 +- 0.10
PXDDataReduction +15%	10000	1268	19454.87	1945.49 +-3450.4
PXDDataRedAnalysis	10000	0	15.79	1.58 +- 0.73
PXDdigiFilter	10000	0	1704.28	170.43 +- 44.93
PXDClusterizer	10000	0	3.04	0.30 +- 0.08
VXDTF	10000	0	341.27	34.13 +- 219.30
RootOutput	10000	35	57.52	5.75 +- 61.74
 Total	10001	532	49721.60	4971.66 +-3533.3

- executed @ KEK
- no parallelisation
- compiled in opt mode

F2F Tracking Meeting - 30th Sept 2014


~ 76 MCParticles per event

~ 9.4 TrackCand per event

bkgdir = '/sw/belle2/bkg.new/'
bkgFiles = [
 bkgdir + 'twoPhoton_200us.root',
 bkgdir + 'Coulomb_HER_100us.root',
 bkgdir + 'Coulomb_LER_100us.root',
 bkgdir + 'RBB_HER_100us.root',
 bkgdir + 'RBB_LER_100us.root',
 bkgdir + 'Touschek_HER_100us.root']

4

ROI Finding Efficiency

Software quality assurance

- We need to sharply improve on this side.
 - Luigi reported a sudden worsening of the vertex resolution and the bug went unnoticed for weeks.
 - Tracking validation plots didn't help to catch timely the bug:
 - lack of instructions for the software shifters,
 - lack of some key plots
 - lack of effective contact with people doing physics analysis

Conclusions

- We had a very fruitful and pleasant meeting.
- Things are progressing quite well (even if with some delays with respect our schedule).
- Major ongoing efforts:
 - development of a Trasan free CDC track finder,
 - refactoring of the VXDTF.
- Next F2F tracking meeting in Vienna on January Monday the 12th 2014