introduct	2012 CENN I D	reasibility study	Conclusion
	Prospects of X/X_0 measurements at the CERN SPS test beam		N
	Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*		
	University of Göttingen, II. Physikalisches Institut		
	October 2nd 2014, 17th DEF	PFET Workshop in Pisa	

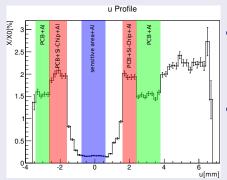
2012 CERN TB

Image: A math a math

Feasibility study

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Prospects of X/X_0 measurements at the CERN SPS test beam

Introduction


University of Göttingen

Conclusion

Feasibility study

Conclusion

X/X_0 Measurement at CERN

- X/X₀ measurements with errors below 10 % at DESY, but does it also work at CERN SPS test beams?
- Main problem at CERN: small MSC distributions due to high beam energy

Image: A match a ma

- But: Better angular resolution than at DESY
- What setup and beam energy should be used? And what angular resolution can be achieved in the best case?

Multiple scattering

Highland Formula(only small scattering angles)

$$\sigma_{\rm HL} = \frac{0.0136 \cdot q[e]}{\beta \cdot p \,[{\rm GeV}]} \cdot \sqrt{\frac{X}{X_0}} \left(1 + 0.0038 \ln\left(\frac{X}{X_0}\right)\right) \, \text{rad}$$

V. L. Highland, Some practical remarks on multiple scattering, Nuclear Instruments and Methods, 1975

CERN SPS, 120 GeV pions

- 150 μ m Si: $\sigma_{\rm HL}{=}3.4~\mu$ rad
- 100mm air: $\sigma_{\rm HL}{=}1.4~\mu{
 m rad}$
- 5mm alu: $\sigma_{
 m HL}{=}23.9~\mu{
 m rad}$

DESY, 4 GeV electrons

- 150 μ m Si: $\sigma_{\rm HL}{=}102.7~\mu$ rad
- 100mm air: $\sigma_{\rm HL}{=}42.8~\mu{
 m rad}$
- 5mm alu: $\sigma_{\rm HL}{=}717~\mu{
 m rad}$

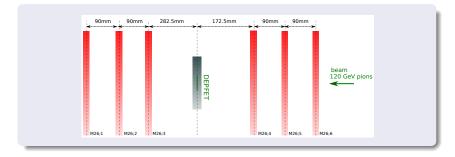
<ロト </p>

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Prospects of X/X_0 measurements at the CERN SPS test beam

Multiple scattering

Highland Formula(only small scattering angles)

$$\sigma_{\rm HL} = \frac{0.0136 \cdot q[e]}{\beta \cdot p \,[{\rm GeV}]} \cdot \sqrt{\frac{X}{X_0}} \left(1 + 0.0038 \ln\left(\frac{X}{X_0}\right)\right) \, \text{rad}$$

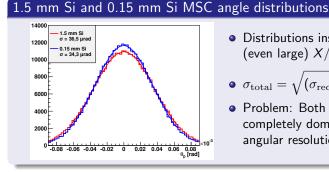

V. L. Highland, Some practical remarks on multiple scattering, Nuclear Instruments and Methods, 1975

Consequences for MSC studies at CERN

- The MSC distribution on the central plane is very narrow
- Angle reconstruction error (² = telescope angular resolution) must be small and known extremely precisely

Image: A math a math

MC Simu Telescope setup


Angular resolution of this setup

- Setup of CERN Test Beam in October 2012
- $\sigma_{
 m reco} = 33.7 \ \mu
 m rad$ for 120 GeV pions (without calibration)
- Typical angular resolution at DESY: 190 μ rad

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Prospects of X/X_0 measurements at the CERN SPS test beam University of Göttingen

Image: A matrix of the second seco

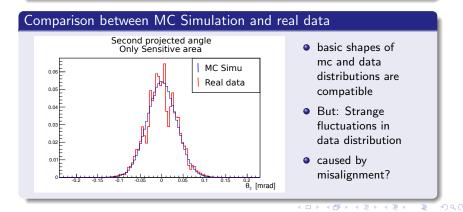
Example of reconstructed angle distributions

 Distributions insensitive to (even large) X/X_0 changes

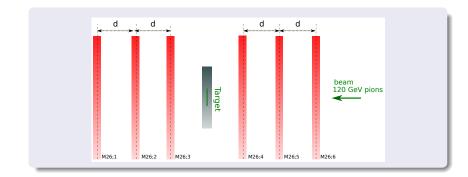
$$\sigma_{
m total} = \sqrt{\left(\sigma_{
m reco}
ight)^2 + \left(\sigma_{
m HL}
ight)^2}$$

Problem: Both distributions completely dominated by angular resolution

Image: A matrix and a matrix


Solution

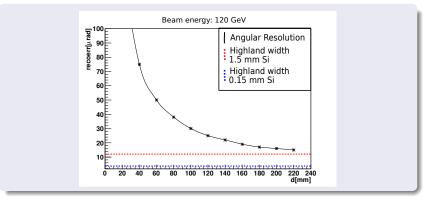
- Setup must be optimized to reduce influence of angular resolution
- Alternatively: Use thicker target materials or reduce beam energy


Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Prospects of X/X_0 measurements at the CERN SPS test beam

MSC angle distributions of Test Beam Run 73407

- $\bullet~$ October 2012 CERN TB setup \rightarrow \approx 90 mm gaps between sensors
- Angular resolution: $\sigma_{\rm reco}^{\rm exp.} = 33.7 \mu {
 m rad}$

Optimal Setup for CERN SPS Test Beams

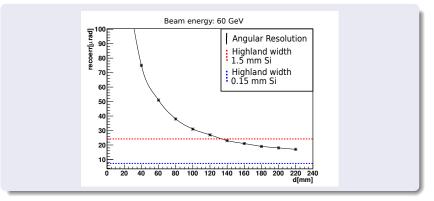

Telescope Setup

- Vary distance *d* between the M26 sensors
- ullet max distance between Mimosas at CERN: pprox 15 cm

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Prospects of X/X_0 measurements at the CERN SPS test beam University of Göttingen

Image: A math a math

Optimal Setup for CERN SPS Test Beams


Optimal Setup at CERN TB

- Choose gaps as large as possible to optimize the telescope resolution
- Maximal realistic gap size: 15 cm $ightarrow \sigma_{
 m reco} =$ 20.6 μ rad

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

Prospects of X/X_0 measurements at the CERN SPS test beam

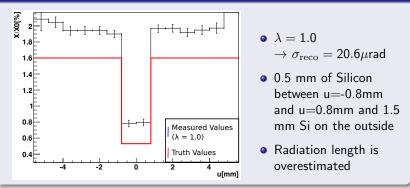
Optimal Setup for CERN SPS Test Beams

Optimal Setup at CERN TB

 $\bullet\,$ If possible beam energy should be reduced \rightarrow larger $\sigma_{\rm HL}$ values

•
$$\sigma_{
m reco} = 22.2 \ \mu$$
rad at 60 GeV and $d{=}15$ cm

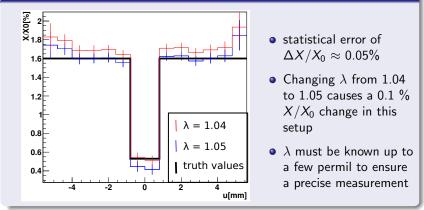
Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*


Prospects of X/X_0 measurements at the CERN SPS test beam

Calibration of the angular resolution

Calibration factor
$$\lambda$$
, $\sigma_{\rm reco} = \lambda \cdot \sigma_{\rm reco}^{\rm exp.}$

 λ contains the influence of all systematical errors on the telescope angular resolution, for example errors due to neglecting MSC tails in the tracking


Radiation length u Profile for optimal setup (d=15cm, p=120GeV), simulation

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Prospects of X/X_0 measurements at the CERN SPS test beam

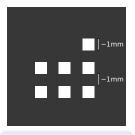
Calibration of the angular resolution II

λ = 1.05 and λ =1.04 profile comparison

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Prospects of X/X_0 measurements at the CERN SPS test beam University of Göttingen

Image: A matrix of the second seco

• Target consisting of 9 aluminum layers with different configurations of a 3×3 hole array in each layer



A very similar target has already been used at DESY for X/X_0 measurements

Image: A math a math

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Prospects of X/X_0 measurements at the CERN SPS test beam

- Target consisting of 9 aluminum layers with different configurations of a 3×3 hole array in each layer
- $\bullet\,$ rectangular holes with $\approx\,1mm$ side length
- $\bullet\,$ distance between holes also $\approx\,1\text{mm}$

A very similar target has already been used at DESY for $X/X_{\rm 0}$ measurements

Image: A math a math

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Prospects of X/X_0 measurements at the CERN SPS test beam

- Target consisting of 9 aluminum layers with different configurations of a 3×3 hole array in each layer
- $\bullet\,$ rectangular holes with $\approx\,1mm$ side length
- $\bullet\,$ distance between holes also $\approx\,1\text{mm}$
- Thickness of layers should between 0.5 mm and 1 mm

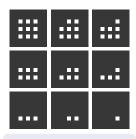

A very similar target has already been used at DESY for $X/X_{\rm 0}$ measurements

Image: A math a math

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Prospects of X/X_0 measurements at the CERN SPS test beam University of Göttingen

10/11

- Target consisting of 9 aluminum layers with different configurations of a 3×3 hole array in each layer
- $\bullet\,$ rectangular holes with $\approx\,1mm$ side length
- $\bullet\,$ distance between holes also $\approx\,1\text{mm}$
- Thickness of layers should between 0.5 mm and 1 mm
- Position of target doesn't have a large effect on angle reconstruction
 - \rightarrow Attach alu target to inner M26 sensor

A very similar target has already been used at DESY for $X/X_{\rm 0}$ measurements

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* <u>Prospects of X/X_0 measurements at the CERN SPS test beam</u>

To optimize the X/X_0 measurement:

- Use large distances between M26 sensors (max distance \approx 15 cm at CERN)
- Use lowest possible beam energy (if possible \approx 60 GeV)
- Do calibration measurements with an aluminum target including a thickness profile

PXD6 Measurement

We plan to do a spatial resolved measurement of a PXD6 module including some of the surrounding ASICs

Image: A math a math

Thank you for your attention!

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Prospects of X/X_0 measurements at the CERN SPS test beam University of Göttingen

11/11

Back Up Slides

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Prospects of X/X_0 measurements at the CERN SPS test beam University of Göttingen

Image: A math a math

11/11

Reconstruction of MSC angles in a EUDET telescope

- Reconstruct angles on the DEPFET
- Particle crosses sensor \rightarrow hits

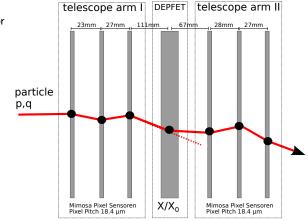
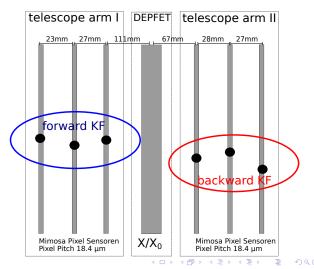


Image: A math a math

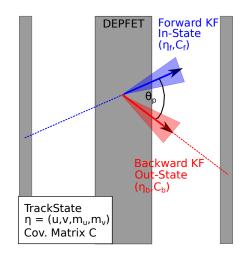

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

University of Göttingen

Prospects of X/X_0 measurements at the CERN SPS test beam

Reconstruction of MSC angles in a EUDET telescope

- Reconstruct angles on the DEPFET
- Particle crosses sensor → hits
- Forward- backward Kalman Filter (KF) pair on hits
- hit on DEPFET not needed $\rightarrow X/X_0$ map
- Take MSC in air gaps into account


Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg*

University of Göttingen

Prospects of X/X_0 measurements at the CERN SPS test beam

Reconstruction of MSC angles in a EUDET telescope

- Reconstruct angles on the DEPFET
- Particle crosses sensor \rightarrow hits
- Forward- backward Kalman Filter (KF) pair on hits
- hit on DEPFET not needed $\rightarrow X/X_0$ map
- Take MSC in air gaps into account
- θ_p calculated from (m_u, m_v)
- Reco error σ_{reco} from error propagation

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Prospects of X/X_0 measurements at the CERN SPS test beam

Forward and Backward KF

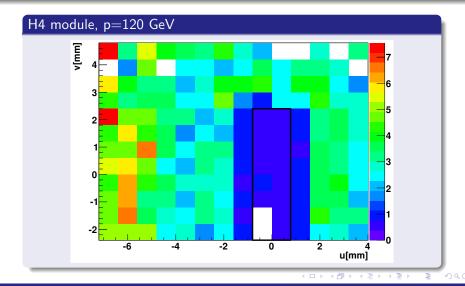
Forward KF

- gives In-State
- prediction of track state on sensor i+1 based on tracks state i

$$\begin{aligned} \eta_{i+1} &= F_{i \to i+1} \eta_i \\ V_{i+1} &= F_{i \to i+1} V_i F_{i \to i+1}^{\mathrm{T}} \\ &+ Q_{\mathrm{F};i} \end{aligned}$$

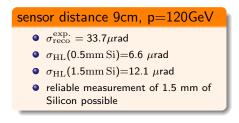
- F: Extrapolation matrix
- Q: MSC effects

Backward KF


- gives Out-State
- prediction of track state on sensor i based on tracks state i+1

$$\begin{aligned} \eta_i &= F_{i+1 \to i} \eta_{i+1} \\ V_i &= F_{i+1 \to i} V_{i+1} F^{\mathrm{T}}_{i+1 \to i} \\ &+ Q_{\mathrm{B};i+1} \end{aligned}$$

Image: A match a ma


Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Prospects of X/X_0 measurements at the CERN SPS test beam

DEPFET Hybrid 4 Map

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Prospects of X/X_0 measurements at the CERN SPS test beam

Results of 4 different configurations

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Prospects of X/X_0 measurements at the CERN SPS test beam

Results of 4 different configurations

sensor distance 9cm, p=120GeV

- $\sigma_{
 m reco}^{
 m exp.} = 33.7 \mu
 m rad$
- σ_{HL}(0.5mm Si)=6.6 μrad
- $\sigma_{\rm HL}(1.5 {\rm mm\,Si}) = 12.1 \ \mu {\rm rad}$
- reliable measurement of 1.5 mm of Silicon possible

sensor distance 15cm, p=120GeV

- $\sigma_{
 m reco}^{
 m exp.} = 20.6 \mu
 m rad$
- $\sigma_{\rm HL}$ (0.5mm Si)=6.6 μ rad
- σ_{HL}(1.5mm Si)=12.1 μrad

Image: Image:

• reliable measurement of 1.5 mm of Silicon possible

Results of 4 different configurations

sensor distance 9cm, p=120GeV

- $\sigma_{\rm reco}^{\rm exp.} = 33.7 \mu {\rm rad}$
- σ_{HL}(0.5mm Si)=6.6 μrad
- σ_{HL}(1.5mm Si)=12.1 μrad
- reliable measurement of 1.5 mm of Silicon possible

sensor distance 15cm, p=120GeV

- $\sigma_{
 m reco}^{
 m exp.} = 20.6 \mu
 m rad$
- $\sigma_{\rm HL}$ (0.5mm Si)=6.6 μ rad
- $\sigma_{\rm HL}(1.5 {\rm mm\,Si}) = 12.1 \ \mu {\rm rad}$

Image: A math a math

• reliable measurement of 1.5 mm of Silicon possible

sensor distance 9cm, p=60GeV

- $\sigma_{
 m reco}^{
 m exp.} = 34.8 \mu
 m rad$
- σ_{HL}(0.5mm Si)=13.3 μrad
- σ_{HL}(1.5mm Si)=24.2 μrad
- reliable measurement of 0.5 mm of Silicon possible

Results of 4 different configurations

sensor distance 9cm, p=120GeV

- $\sigma_{\rm reco}^{\rm exp.} = 33.7 \mu {\rm rad}$
- σ_{HL}(0.5mm Si)=6.6 μrad
- σ_{HL}(1.5mm Si)=12.1 μrad
- reliable measurement of 1.5 mm of Silicon possible

sensor distance 15cm, p=120GeV

- $\sigma_{
 m reco}^{
 m exp.} = 20.6 \mu
 m rad$
- $\sigma_{\rm HL}$ (0.5mm Si)=6.6 μ rad
- σ_{HL}(1.5mm Si)=12.1 μrad
- reliable measurement of 1.5 mm of Silicon possible

sensor distance 9cm, p=60GeV

- $\sigma_{
 m reco}^{
 m exp.} = 34.8 \mu
 m rad$
- σ_{HL}(0.5mm Si)=13.3 μrad
- σ_{HL}(1.5mm Si)=24.2 μrad
- reliable measurement of 0.5 mm of Silicon possible

sensor distance 15cm, p=60GeV

- $\sigma_{
 m reco}^{
 m exp.} = 22.2 \mu
 m rad$
- σ_{HL}(0.5mmSi)=13.3 μrad
- σ_{HL}(1.5mm Si)=24.2 μrad
- reliable measurement of 0.5 mm of Silicon possible

<ロト </p>

Ariane Frey, Benjamin Schwenker and Ulf Stolzenberg* Prospects of X/X_0 measurements at the CERN SPS test beam