

PXD BEAST

C. Marinas University of Bonn

PXD BEAST II Plan

- 2 PXD half ladders (L1+L2)
- Thermal envelope and cooling (dry air+CO₂)
- BEAST II specific monitoring
 - \rightarrow Synchrotron radiation
- General monitoring (T and RH) and abort systems
 - \rightarrow Fibers and commercial devices

Synchrotron Radiation Study

SDD Performance

SDD Energy Calibration

- Measured Gaussian mean value of several K_{α} and K_{β} transitions
- Linear response

universität**bonn**

Optimum range 135 V \leq HV \leq 150 V

Temperature Dependency

Control of the temperature is vital to keep performance

cmarinas@uni-bonn.de

X-ray Irradiation

- X-ray irradiation up to 4 Mrad (KIT)
- 60 kV with 15 μ m Iron filter
- 100 krad, 300 krad, 600 krad, 1 Mrad, 2 Mrad, 3 Mrad, 4 Mrad
- No annealing. Biased sensor during irradiation.
- SDD temperature during irradiation -5°C. Dry environment (25°C).
- Resolution is worsened after each step. Gain slightly reduced
- Temperature control is vital

cmarinas@uni-bonn.de

Temperature Dependence After Irradiation

4 Mrad Annealed 80 °C, 100 min

→ Even after annealing, low temperature is vital

Issues

Still, issues remain:

- Operation in magnetic field
- Limited count rate (simulations needed!)
- System related aspects (cable length and electronics)
- Availability and costs (Amptek, Ketek, FBK)

FE-I4 Based Option

Hybrid planar sensor FE-I4 based

- Pixel size: 50 x 250 μm^2
- Radiation tolerance: 300 Mrad
- Hit-trigger association resolution: 25 ns

 \rightarrow Alternative aproach to measure backgrounds

 \rightarrow If the condition on the energy resolution is relaxed a bit, this device is fast, rad hard and minimizes system related problems

Mechanical Assembly

- SDD shows good energy resolution and is radiation hard (3 Mrad)
 → Operation temperature < -15°C
- Still some issues unresolved (max rates based on simulations, system related aspects and availability) and need further investigations and decisions
- Full standalone FE-I4 based option seems to satisfy the conditions (fast, rad hard, system development) if we relax the energy resolution requirements

Thank you

