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Introduction

The study of supergravity of type II backgrounds (with
fluxes) has received much attention in last 10-15 years.
The supersymmetry conditions for the type II background
of the form R1,3 ×M6 can be written in terms of the pure
spinors associated to SU(3)× SU(3)-structure on
TM6 ⊕ T ∗M6

One-to-one-correspondence between supersymmetry
conditions and generalised D-brane calibration.
The idea is to verify that this correspondence is also valid
for the type II backgrounds of the form R1,2 ×M7
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N = 1 SUSY (IIA type)

Interest in type IIA backgrounds (with fluxes) preserving
three-dimensional Poincaré invariance,
N = 1 supersymmetry.

The ansatz for ten-dimensional metric GMN

ds2 = e2A(y)ηµνdxµdxν + e2B(y)g̃mn(y)dymdyn.
The RR-fields decomposition is

Fn = F̂n + Vol3 ∧ F̃n−3, n even

with the relation between the internal components

F̃7−n = (−1)
n(n−1)

2 e3Ae(7−2n)B ∗7 F̂n
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N = 1 SUSY (IIA type)

Furthermore we suppose the susy-generators ε1,2 have
the same norm and decompose them

ε1 = ζ ⊗ ξ1(y)⊗ (0, 1)t , ε2 = ζ ⊗ ξ2(y)⊗ (1, 0)t

where ζ is a constant spinor on Minkowski space, ξi are
the spinors on the internal manifold with the conditions

ζ∗ = α−1ζ, ξ1∗ = αξ1, ξ2∗ = −αξ2, α ∈ C and ‖α‖ = 1
The internal spinors ξ1,2 are fixed and characterize the
reduction of the structure group of TM7 ⊕ T ∗M7 from
SO(7,7) to G2 ×G2 and can be associated to an even
polyform Ψ+ using the Clifford map.

The G2 ×G2-structure→

{
G2, if ξ1,2 are parallel,
SU(3), if ξ1,2 are orthogonal
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N = 1 SUSY (IIA type)

The necessary and sufficient conditions to have the
supersymmetric type IIA background of form R1,2 ×M7

dH(e3A−ΦΨ+) = F̃A, (1a)

dH(e2A−Φ ∗7 σ(Ψ+)) = 0, (1b)

F̃A ∧ σ(Ψ+)|7 = 0, (1c)

‖ξ1‖2 = ‖ξ2‖2 = eA (1d)

where F̃A = F̃1 + F̃3 + F̃5 + F̃7 and dH := d + H∧
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N = 1 SUSY (IIA type)

The supersymmetry equations for type IIB can be obtained
by exchange

Ψ+ ↔ ∗7σ(Ψ+) and F̃A ↔ F̃B

where F̃B = F̃0 + F̃2 + F̃4 + F̃6

This relation can be seen as a generalised mirror
symmetry for type II backgrounds with G2 ×G2-structure
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Calibrations

Furthermore we consider the static, magnetic D-branes
(Σ,F ), filling 1 + q (q = 1,2) spacetime dimensions and
wrapping a cycle Σ in the internal space, with the
worldvolume field strength F (dF = PΣ[H])

Also we restrict the case ‖ξ1‖2 = ‖ξ2‖2 = eA and
F̃A ∧ σ(Ψ+)|7 = 0
A generalised calibration is a polyform ω such that

a) dHω = 0
b) PΣ[ω] ∧ eF ≤ E (Σ,F ) for the energy density E and
any D-brane (Σ,F )

A D-brane is calibrated iff the inequality above is saturated
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Calibrations

We define the following polyforms

ω(q=1) := e2A−Φ ∗7 σ(Ψ+)

ω(q=2) := e3A−ΦΨ+ −
∑

k

C̃(2k)
(2)

With the κ-symmetry and worldvolume chiral operator we
can show that (2) satisfies the bound condition (b).
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Calibrations

Using the operator dH and the condition F̃A = dH
∑
k

C̃(2k)

we obtain

dHω
(q=2) = dH(e3A−ΦΨ+ − F̃A)

dHω
(q=1) = dH(e2A−Φ ∗7 σ(Ψ+))

They are equivalent to the first two susy-equations

dH(e3A−ΦΨ+) = F̃A, (1a)
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k

C̃(2k)
(2)

With the κ-symmetry and worldvolume chiral operator we
can show that (2) satisfies the bound condition (b).

The condition (a) is to the susy conditions (1) equivalent.
⇒ the one-to-one-correspondence between the
calibrations and susy equations
The D-brane is calibrated iff it is supersymmetric.
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Conclusions

I studied N = 1 supersymmetric type II backgrounds of
the form R1,2 ×M7 during my master thesis.
I showed that the SUSY conditions can be expressed in
terms of polyform that defines the G2 ×G2-structure on the
internal manifold M7,
and there is an one-to-one correspondence between
background susy equations and generalised D-brane
calibrations. (These results were already explored in
[hep-th/0905.1582])
The D-branes are calibrated iff they are supersymmetric.
It would be interesting to pursue this analysis and to
calculate susy conditions for AdS3 ×M7-background
and find out the conditions for susy-breaking
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