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@ The study of supergravity of type Il backgrounds (with
fluxes) has received much attention in last 10-15 years.

@ The supersymmetry conditions for the type Il background
of the form R'3 x Mg can be written in terms of the pure
spinors associated to SU(3) x SU(3)-structure on
TMg @ T*Msg

@ One-to-one-correspondence between supersymmetry
conditions and generalised D-brane calibration.

@ The idea is to verify that this correspondence is also valid
for the type Il backgrounds of the form R'2 x M,
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@ Interest in type IIA backgrounds (with fluxes) preserving

o three-dimensional Poincaré invariance,
o ./ =1 supersymmetry.

@ The ansatz for ten-dimensional metric Gy
ds? = AWy, dx”dx” + €2BU)gmn(y)dy™dy".
@ The RR-fields decomposition is
F,=F,+\Vols A F, 5, neven
with the relation between the internal components

Frn= (—1 )n(n;) e3el7-2NB 4 F,
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@ Furthermore we suppose the susy-generators "2 have
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el=¢ed(y)e0, 1), £=¢ey)e(, 0)
where ¢ is a constant spinor on Minkowski space, ¢’ are
the spinors on the internal manifold with the conditions
C=a71¢, *=af', 2 =-a acCand|al=1

@ The internal spinors ¢'2 are fixed and characterize the
reduction of the structure group of TM7 & T*M; from

SO(7,7) to Go x G and can be associated to an even
polyform W+ using the Clifford map.

Go, if €12 are parallel,

@ The Gy x Go-structure —
2n T {SU(S), if ¢12 are orthogonal
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@ The necessary and sufficient conditions to have the
supersymmetric type IIA background of form R'2 x M,

du(e3APuT) = Fy, (1
du(e®® s o(W)) =0, (1
Fano(wth), =0, (1
I1€Y% = |2 = &* (1

wherel:'A:l:'1+l-'3+l-'5+l-'7andd,.,::d+HA
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@ The supersymmetry equations for type |IB can be obtained
by exchange

Ut o *70’(\|/+) and IN:A <~ I:_B

where ,:_B = ,:—0 + ,:_2 + I:_4 =+ I:_s
@ This relation can be seen as a generalised mirror
symmetry for type Il backgrounds with G> x Go-structure
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@ Furthermore we consider the static, magnetic D-branes
(x,.7), filing 1 + g (g = 1, 2) spacetime dimensions and
wrapping a cycle ¥ in the internal space, with the
worldvolume field strength .7 (d.# = Px[H])
@ Also we restrict the case ||¢1]|2 = ||¢?||2 = ¢* and
FA VAN O‘(\U+)|7 0
@ A generalised calibration is a polyform w such that
a) dyw =0
b) Ps[w] A €7 < &(%,.F) for the energy density & and
any D-brane (X,.7)

@ A D-brane is calibrated iff the inequality above is saturated
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@ Using the operator dy and the condition Fa=dy > C(gk)
k
we obtain

Aw(9=2) = dy(e®A~Put — Fp)
A =" = dy(e24® %7 o(VH))

@ They are equivalent to the first two susy-equations

dH(GSA_¢\U+) — F_A, (
du(e# " x70(WT)) =0, (
Fano(™), =0, (
€117 = [|€?]% = & (
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@ and there is an one-to-one correspondence between
background susy equations and generalised D-brane
calibrations. (These results were already explored in
[hep-th/0905.1582])

@ The D-branes are calibrated iff they are supersymmetric.

@ It would be interesting to pursue this analysis and to
calculate susy conditions for AdS3 x M7-background

@ and find out the conditions for susy-breaking
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