Non-associative Deformations of Geometry in Double Field Theory

Michael Fuchs

Max Planck Institut für Physik München
based on JHEP 04(2014)141 by R. Blumenhagen, MF, F. Haßler, D. Lüst, R. Sun
29th IMPRS Workshop July 7th, 2014

Outline

- Deformation Quantization
- T-Duality and non-associativity in String Theory
- Non-associative Deformations of Geometry in DFT

Canonical Quantization

Replace Poisson-bracket by commutator:

$$
\{x, p\}_{P B}=1 \quad \rightarrow \quad[x, p]=i \hbar
$$

Fulfilled for instance by operators: $\hat{p}=-i \hbar \frac{\partial}{\partial x}$

Deformation Quantization:

No operators, instead change multiplication law: Replace $f \cdot g$ by

$$
f \star g:=f \cdot g+\frac{i \hbar}{2}\binom{\partial_{x} f}{\partial_{p} f}^{T}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{\partial_{x} g}{\partial_{p} g}
$$

Insert coordinate and momentum:

$$
\left.\begin{array}{l}
x \star p=x \cdot p+\frac{i \hbar}{2} \\
p \star x=p \cdot x-\frac{i \hbar}{2}
\end{array}\right\}[x, p]=x \star p-p \star x=i \hbar
$$

Take home message:

Commutation relations realized by deformed product 9709040

$$
f \star g:=f \cdot g+\frac{i \hbar}{2} \omega^{i j} \partial_{i} f \partial_{j} g+\mathcal{O}\left(\hbar^{2}\right)
$$

String Theory

Fundamental objects not points, but strings

Strings must live in 10D \rightarrow compactify!

T-Duality

Closed strings wind around compactified dimensions:

momenta p_{i}

coordinate x^{i}
$\xrightarrow{\text { T-Duality }}$
$\xrightarrow{\text { T-Duality }}$
winding momenta \tilde{p}^{i}

winding coordinate \tilde{x}_{i}

Non-geometric Fluxes

T-Duality mixes G and $B \Rightarrow$ change of geometry

Non-associative Geometry

Blumenhagen, Lüst, Plauschinn et alii:

$$
\left[x^{a}, x^{b}\right] \cong R^{a b c} p_{c}
$$

"fuzzy" geometry due to Heisenberg uncertainty:

$$
\Delta x^{a} \Delta x^{b} \cong\left\langle\left[x^{a}, x^{b}\right]\right\rangle \neq 0
$$

non-vanishing Jacobi identity! $\hat{=}$ non-associative operators!
Not possible in ordinary quantum mechanics!

Deformed product vanishes for observables by momentum Conservation! 1106.0316 by Blumenhagen, Deser, Lüst, Plauschinn, Rennecke

Our work: Investigate in double field theory how non-associativity vanishes!

Double Field Theory

Combine ($\binom{$ normal }{ winding } in 2D vector

$$
P_{M}=\binom{p_{i}}{\tilde{p}^{i}} \quad \partial_{M}=\binom{\partial_{i}}{\tilde{\partial}^{i}} \quad X_{M}=\binom{x_{i}}{\tilde{x}^{i}}
$$

\Rightarrow Coordinates and winding on equal footage!

BUT: Constraints needed for consistency!

Non-associative Deformations of Geometry in DFT

Translate deformed product into DFT:

$$
f \Delta g \Delta h=f \cdot g \cdot h+\underbrace{}_{\text {contains } \mathrm{H}, \mathrm{f}, \mathrm{Q}, \mathrm{R}} \mathcal{F}_{A B C} \partial^{A} f \partial^{B} g \partial^{C} h
$$

We found: Deformation vanishes by consistency constraints!

Deformation in physical situations (action) $\hat{=}$ integration:

$$
\int_{D F T} \mathcal{F}^{A B C} \mathcal{D}_{A} f \mathcal{D}_{B} g \mathcal{D}_{C} h \stackrel{\mathrm{PI}}{=}-\int_{D F T} \underbrace{\mathcal{Z}^{A B}}_{\text {Bianchi } \mathcal{Z}^{A B}=0!} f \mathcal{D}_{A} g \mathcal{D}_{B} h
$$

Another deformation:

DFT allows for another deformation:

$$
f \Delta g \Delta h=f \cdot g \cdot h+\breve{\mathcal{F}}_{A B C} \partial^{A} f \partial^{B} g \partial^{C} h
$$

\Rightarrow Generalization of open strings in B-field background 9812219

No reason to vanish! Integral:

$$
\int_{D F T} \breve{\mathcal{F}}^{A B C} \mathcal{D}_{A} f \mathcal{D}_{B} g \mathcal{D}_{C} h \stackrel{\mathrm{PI}}{=}-\int_{D F T} \underbrace{\mathcal{G}^{A B}}_{\text {eom: } \mathcal{G}^{A B}=0!} f \mathcal{D}_{A} g \mathcal{D}_{B} h
$$

Conclusion

associativity of observables preserved by crucial ingredients of double field theory

$\breve{\mathcal{F}}_{A B C} \partial^{A} f \partial^{B} g \partial^{C} h$	$\mathcal{F}_{A B C} \partial^{A} f \partial^{B} g \partial^{C} h$
equation of motion	Bianchi identity
continuity equation	closure of algebra

Outlook

Future research directions:

- Derive higher orders of the product (ongoing)
- Non-associativity in Hamiltionian formalism

