

Concept study for a photomultiplier readout of the HADES RICH

Korbinian Schmidt-Sommerfeld

Hamamatsu.com

- **1. Introduction / Motivation**
- 2. Simulations
- 3. Scintillation measurements

4. Outlook

HADES

*H*igh-Acceptance *DiE*lectron Spectrometer (1999 – FAIR ?)HI reaction dynamics & hadron in-medium modificationsAu + Au @ $E_{kin} = 1 - 8$ AGeV:i.e. $\rho, \omega \rightarrow e^+ + e^-$

IMPRS Workshop - Concept study for a photomultiplier readout of the HADES RICH

The HADES RICH detector

*R*ing-*i*maging *Ch*erenkov detector

Hadron blind device for

 e^+/e^- identification

VUV photon detector MWPC (CH₄) CsI photo cathode

 $<\epsilon_{se}>$ \approx **60**% (2002)

(G. Agakichiev et al., EPJ A41 (2009), 243)

Aging =>

 $<\epsilon_{se}>pprox 35\%$ (2008)

New photon detector

- 8x8 channels
- 52 mm · 52 mm
- Gain: $1.5 \cdot 10^{6}$

Simulation:

- Electrons
- Whole acceptance
- p = 50 200 MeV/c
- $N(\Theta) = const.$
- HGEANT
- Old RICH digitizer
- QE of MAPMT

Simulation

 $< N_{ph} > \approx 140$

 $<\epsilon_{CsI}>pprox 50\%$ $<\epsilon_{BiaIkali}>pprox 80\%$

- Ring finder **not yet optimized** for bialkali QE.
- No significant influence by **new pad geometry**.

Background: Radiator scintillation

- Energy loss by charged particles:
- Scintillation photons from C_4F_{10}
- Detectable with MAPMT
- Estimate for C_4F_{10} :

 $\langle dE \rangle \approx 1 MeV / \text{ch. p.}$ E < 5.4 eV

20 Photons / ch. p.

R. Gernhäuser et al., NIM A371 (1996) 300

Scintillation simulation

 C_4F_{10} scintillation not yet implemented in GEANT

Param. ch. p. distribution:

- N, p, θ from Au + Au experiment
- $\langle N \rangle \approx 120 / \text{evt.}$
- 90% p^+ & 10% $\pi^{+/-}$
- p^+ p = 500 1900 MeV/c
- $\pi^+, \pi^- p = 200$ 500 MeV/c
- $N_{ph} = f(\theta) \approx 2300$ / evt.

Lehrstuhl E12 **IMPRS** Workshop - Concept study for a photomultiplier readout of the HADES RICH

8

Scintillation measurement I

Tandem, Munich

 $^{32}_{16}S^{8+}, E_{kin} = 90 \text{ MeV} \rightarrow C_4F_{10}, Ar, N_2...$

 N_2

 CF_4

 C_3F_8

 $C_4 H_{10}$

Spectral distributions

Conclusion & outlook

Results:

- MAPMT is a better photon detector
- C_4F_{10} leads to scintillation rings
- ~ 10 fake rings per Au + Au event
- Other radiator gases under study

To be done:

- Adjustment of ring finder
- Geometric arrangement of MAPMTs

13

Scintillation of C_4H_{10}

Thank you!

BACKUP

Korbinian Schmidt-Sommerfeld

Dielectron emission in HI reactions

16

Searching a Dark Photon with HADES

IMPRS Workshop - Concept study for a photomultiplier readout of the HADES RICH

Facility for Antiproton and Ion Research (FAIR)

Future research with HADES at higher energies

fair-center.de

Ageing & Efficiency loss

Simulation results

- Ring finder **not yet optimized** for bialkali QE.
- No significant influence by **new pad geometry**.

Fake scintillation rings

=> Fake rings can be rejected by adjusting ring quality parameters

Scintillation light measurement

Setup: MLL Tandem, Munich

 $^{32}_{16}S^{8+}, E_{kin} = 90 \text{ MeV}$ $\rightarrow C_4 F_{10}, Ar, N_2...$

Spectrometer: Ocean Optics QE65000

 N_2

 CF_4

 C_3F_8

 $C_4 H_{10}$

 $C_4 F_{10}$

Ar

*CO*₂

 CH_4

Scintillation measurement II

Absolute yield measurement $=> N_{ph} / MeV$

Energy deposit by α – particles; distance calculated from α -rate

IMPRS Workshop - Concept study for a photomultiplier readout of the HADES RICH

Scintillation measurement II **v** 600 mbar **980 mbar** 1150 mbar α-Trigger Spectra normalized to number of 6 $C_4 F_{10}$ coincidences at d = 4.2 mmCoincidences per 1000 Energy loss calculated with **GEANT** Yield: $Y_{N_2}^{337nm} = 92 \pm 20 \text{ MeV}^{-1}$ (T. Dandl, et al. Jour. Inst, 7(11):P11005, 2012) 3 5 2 6 **Distance** [mm] $Y_{Ar} = 5000 + 3000 \text{ MeV}^{-1}$ $= 17000 \pm 3000 \text{ MeV}^{-1}$ Lit: Y_{Ar} Detected by the RICH: A. Buzulutskov et al., EPL 94(5):52001, 2011 $N_{ph} \approx 640 \text{ ph} / Au + Au$ $160^{+100}_{-50} \text{ MeV}^{-1}$ $Y_{C_4F_{10}}$

2014-07-07

Scintillation measurement II

- Distance calculated from α -rate
- Dynamic quenching in N_2

HADES

Scintillation simulation

A simulation with realistic parmeters is performed.

- Simulation of Au + Au events
- On avarage 120 charged particles per event
- 90% p^+ & 10% $\pi^{+/-}$
- Number of scintillations photons depending on θ of the primary particle
- Angular and energy distribution from the last beam time
- Approximately 2300 Scintillation photons per event

Scintillation results

Resulting fake rings can be filtered out.

- On avarage 320 photons on the pad plane per event
- Found rings all over the rich
- Accumulation at small angles
- Low quality rings
 - Fired pads ≈ 3.5
 - padmat ≈ 125
 - centroid ≈ 2.0

=> Necessary adjustment of ring quality parameters

Comparison with electronic noise

Filtering fake rings is already done by the electronics.

- Electronic noise of the data readout
- statistically independent firing pads
- Necessity of quality cut for rings
- 4 found rings of poor quality in 10⁴ events

Perspectives

 $\mathsf{MPC} \longrightarrow \mathsf{MAPMT}$

$$C_4F_{10} \rightarrow C_4H_{10}$$

@ 20 1013 h	°C, IPa	C ₄ F ₁₀	C ₄ H ₁₀
ρ	$[g/cm^3]$	9,9	2,4
T _{boil}	[°C]	- 1,7	-11,7
Р	[hPa]	2600	3019
n-1	[@ 300 nm]	1,3 • 10 ⁻³	1,2 • 10-3
Γ_{thresh}		18,2	19,5
N _{ph} (Scint.) [MeV ⁻¹]		25 - 30	2

Schematic picture of the High-Acceptance DiElectron Spectrometer

HADES is used for the systematic study of in-medium properties of light vector mesons ρ , ω and ϕ .

Components:

- **R**ing **I**maging **Ch**erenkov (RICH)
- Mini-Drift Chambers (MDC I-IV)
- Superconducting magnet
- Time-of-flight walls (TOF and RPC)

=> clean signal from decay into e^+/e^- pairs

Stretched view, beam enters from the left [gsi.de]

