

Tracker material study with the energy flow through the CMS electromagnetic calorimeter

Riccardo Paramatti, Ambra Provenza

The electromagnetc calorimeter (ECAL)

To detect photons and electrons

Problem

ECAL energy resolution is a crucial parameter in a lot of analysis

Problem: ECAL energy resolution obtained in $Z \rightarrow e^+e^-$ events \neq ECAL energy resolution expected by MonteCarlo simulation

Cause: Inaccurate description of the tracker material (services)

Problem

Tracker Structure

Problem

Combined action of the tracker **material** and the **magnetic field (B)**

For the **material** $\gamma \rightarrow e^+e^-$

B changes the trajectory of e^+ and e^- .

some e⁺ or e⁻ can not reach ECAL

Goal of the study:

Obtain a better description of the tracker material than the estimate made during the detector construction

e⁺e⁻ without B e⁺e⁻ with B

Study the momentum lost:

Momentum variation \propto material

Use of high energy electrons that radiate photons for bremsstrahlung

• Use of charged pion with $P_t \sim 1$ GeV that do multiple scattering: study of the difference between $P_2 \in P_1$

Conversion method:

In presence of material $\gamma \rightarrow e^+e^-$ Pairs produced \propto material

Conversions map

The Energy Flow method

Energy Flow through the ECAL crystals:

$$S_{xtal} = \Sigma_i (E_t^i)_{xtal}$$

Transverse energy sum for an high number of Minimum Bias events

Energy Flow ratio in ECAL crystals:

Gives a measure of the amount of tracker material because of the combined action of the **tracker material** and the **magnetic field**.

In fact

Data

Run of Minimum Bias events with **magnet off (Boff)** (\sim 2.6*10⁸ events) Run of Minimum Bias events with **magnet on (Bon)** (\sim 2.0*10⁸ events) Taken in the same period

In the analysis only crystals with energy deposits between a **lower threshold** and an **upper threshold** have been considered

 $E_{min} = 400 \text{ MeV}$

To cut the noise

Maximum value of transverse energy

$$(E_t)_{max} = (E_t)_{min} + 1 GeV$$

To reduce fluctuations caused by rare high energy deposits

Average number of energy deposits between the cuts $\sim 3.7*10^5$

- Obtain energy flow for magnet off and magnet on events separately
- Determine the energy flow ratio for each ECAL crystal
- Compute the corrections for the effect that influence the energy flow:
 - Beam spot position effect
 - Border effect
- Comparison between data and MonteCarlo (MC):

$$\frac{R_{data}}{R_{MC}} \neq 1 \quad \longrightarrow \quad$$

Tracker material not well implemented in MC

Energy Flow through ECAL

 $S_{xtal} = \sum_{i} (E_{t}^{i})_{xtal}$ as a function of η index for magnet off and magnet on data

Magnet off data

Magnet on data

Energy Flow Ratio

Energy flow ratio

 $R_{xtal} = \frac{(S_{xtal} < S)_{Boff}}{(S_{xtal} < S)_{Bon}}$

Mean of S_{xtal} in the ECAL barrel

$$S_{xtal} = \Sigma_i (E_t^i)_{xtal}$$

Correlation between R and the tracker material (X/X₀)

Beam spot position effect

The interaction point of the two beams doesn't match always with the center of the detector (z=0). It can take place at a few cm from z=0.

Computing of the corrections:

Bon

Border effect

The crystal axis is not pointing to the center of CMS. They are tilted by 3° with respect to the center of the detector, to maximize the detector acceptance.

The particles entering in the module gap hit the lateral face of the crystal at the border

> Border crystal collects more energy than the other

Border effect

The corrections have been determined by normalizing $<S_{crystal}$ > to the average in the adjacent rings

Energy flow for magnet off data, corrected for the border effect

Corrections take values from $\sim 3\% \rightarrow \sim 15\%$

Comparison between data & MonteCarlo

The ratio R_{data}/R_{MC} gives informations about the inaccuracy on the description of the tracker material.

 $R_{data}/R_{MC} \neq 1 \rightarrow tracker material not well implemented in the MC$

These measures have to be calibrated to have a direct information on the needed additional material (in radiation length)

Comparison between data & MonteCarlo

1/p1 Factor used to convert R_{data}/R_{MC} in the amount of material to be added to the material in the MC simulation ($\Delta M(X_0)$)

$$\frac{R_{data}}{R_{MC}} = 0.01 \rightarrow \Delta M(X_0) = 0.07 X_0$$

Results

- Quite good agreement with other methods
- Larger additional material for 0.5 < $|\eta|$ < 1
- The energy flow method is the only one that take into account 18 the outer layers of the tracker material

- ECAL energy resolution is a key parameter in a lot of analysis: Its knowledge is crucial
- A new method to study the amount of tracker material in front of ECAL has been proposed
- This method uses only calorimetric quantity: It is the only one that take into account the outer layers of the tracker material
- Good agreement with the other methods
- These results are used in the new MC production aimed to the validation of the new measure of the tracker material through the data-MC compatibility in the energy resolution.

CMS experiment at LHC

CMS: Compact Muon Solenoid, one of the two multi-purpose experiment at **LHC**

LHC: Large Hadron Collider, p-p accelerator at CERN, Geneva Run 1: 2009 \rightarrow 2012 \sqrt{s} =7-8 TeV Run 2: from 2015 \sqrt{s} =13-14TeV

	$PbWO_4$	NaI(Tl)	BGO
Density [g/cm ³]	8.28	3.67	7.13
Radiation lenght [cm]	0.89	2.59	1.12
Molière radius [cm]	2.2	4.5	2.4
Peak emission [nm]	425	410	480
LY(related to Nal(Tl)[%])	1.3	100	15
Time emission [ns]	5-15	250	300

Longitudinal distance for which an electron traversing the material loses on average 1/e of its energy through diffusion processes. For E~TeV the 98% of the longitudinal development is contained in $25X_0$.

$$R_{M} = \frac{21.2 \, MeV * X_{0}}{E_{C}[MeV]}$$

describe the transversal development of an electromagnetic shower. The 90% of the shower is contained in a cylinder with a radius equal to $3.5 R_{M}$

Energy resolution

For e
$$E_c = \frac{610 \, MeV}{Z}$$

 $\frac{\sigma(E)}{E} = \frac{S}{\sqrt{E}} \oplus \frac{N}{E} \oplus C$

Energy Flow through ECAL

 $S_{xtal} = \Sigma_i (E_t^i)_{xtal}$ For magnet off data

24

Beam spot position

The interaction point of the two beams doesn't match always with the center of the detector (z=0). It can take place at a few cm from z=0.

Beam spot position distribution for the two groups of data

Magnet on data

Computing of the corrections for Boff data:

The beam spot position distribution has been divided into 10 intervals (Z_k) :

This quantity has been defined

$$(R_{Z_k})_{Boff} = \frac{\left(\left(\Sigma E_t^i / \langle \Sigma E_t \rangle_{Z_k}\right)_{Boff}\right)}{\left(\Sigma E_t^i / \langle E_t \rangle_{Bon}\right)}$$

It has been studied as a function of the beam spot

Computing of the corrections for Boff data:

The beam spot position distribution has been divided into 10 intervals (Z_k) :

This quantity has been defined

$$(R_{Z_k})_{Boff} = \frac{((\Sigma E_t^i / \langle \Sigma E_t \rangle)_{Z_k})_{Boff}}{(\Sigma E_t^i / \langle E_t \rangle)_{Bon}}$$

Computing of the corrections for Bon data:

The beam spot distribution has been divided into 10 intervals (Z_{μ}) :

This quantity has been defined

$$(R_{Z_k})_{Bon} = \frac{(\Sigma E_t^i / \langle \Sigma E_t \rangle)_{Boff}}{((\Sigma E_t^i / \langle E_t \rangle)_{Z_k})_{Bon}}$$

They have been studied as a function of the beam spot

Computing of the corrections for Bon data:

The beam spot position distribution has been divided into 10 intervals (Z_k):

This quantity has been defined

$$(R_{Z_k})_{Bon} = \frac{(\Sigma E_t^i / \langle \Sigma E_t \rangle)_{Boff}}{((\Sigma E_t^i / \langle E_t \rangle)_{Z_k})_{Bon}}$$

After the correction

$$(E_t^{corr})_{Bon} = E_t * (p1 * Z + 1)$$

Bon

Border Effect

Corrections derived from MC and for in and i ECAL coordinate

in border correction

$$C_{\eta_{i}}^{\pm} = \frac{\langle E_{t}(\eta_{i}) \rangle - (\langle E_{t}(\eta_{i+1}) \rangle + \langle E_{t}(\eta_{i-1}) \rangle)/2}{(\langle E_{t}(\eta_{i+1}) \rangle + \langle E_{t}(\eta_{i-1}) \rangle)/2}$$

Total correction
$$C_{\eta_i} = \frac{C_{\eta_i}^+ + C_{\eta_i}}{2}$$

30

Border Effect

Border Effect

Table of border corrections for magnet off and magnet on MC

	B_{off}	B_{on}
$C_{\eta_i=1}$	$(3.5 \pm 0.1)\%$	$(3.3 \pm 0.2)\%$
$C_{\eta_i=26}$	$(11.0 \pm 0.3)\%$	$(11.2 \pm 0.3)\%$
$C_{\eta_i=46}$	$(13.6 \pm 0.3)\%$	$(14.6 \pm 0.3)\%$
$C_{\eta_i=66}$	$(14.0 \pm 0.4)\%$	$(15.4 \pm 0.4)\%$
$(C_{\phi}^+)_R$	$(9.8 \pm 0.8)\%$	$(10.1 \pm 0.7)\%$
$(C_{\phi}^{-})_R$	$(10.3 \pm 0.7)\%$	$(10.8 \pm 0.8)\%$
$(C_{\phi}^{+})_{L}$	—	$(3.2 \pm 1.0)\%$
$(C_{\phi}^{-})_{L}$	_	$(3.4 \pm 1.0)\%$
$(C_{\phi})_R$	$(10.0 \pm 1.1)\%$	$(10.4 \pm 1.1)\%$
$(C_{\phi})_L$	_	$(3.3 \pm 1.0)\%$

Boff and Bon correction are not the same so they have been derived separately

Correlation between R and tracker material

Correlation between the energy flow ratio and the tracker material (X/X_0)

$$\Delta M(X_0) = \frac{1}{p1} \left(\frac{R_{dati}}{R_{MC}} - 1 \right)$$

$$M(X_0) = M(X_0)^{std} + \Delta M(X_0)$$

Measure of the material made during the detector construction