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Discovery of the Higgs boson

In 2013 ATLAS and CMS experiments con�rmed that the boson found in
2012 is compatible with a Higgs boson.

Mass of 125 GeV.
Spin 0.
Decays γγ, ZZ and W+W− as predicted by SM.

The Brout�Englert�Higgs mechanism is responsible for the mass of the

W and Z bosons.
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Fermion couplings

The SM Higgs couples to fermions, via Yukawa couplings.

Branching ratios predicted to scale with the mass squared of the decay
products.

Most abundant fermionic decay channels:

H → τ+τ−

H → bb̄

Some theories predict a di�erent mechanism for the masses of the
leptons (eg, more than one Higgs �eld).
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Evidence for fermion couplings

2013, ATLAS experiment.

Signi�cance of 4.1σ in the ττ channel.

June 2014, CMS experiment.

Signi�cance of 3.4σ in the ττ channel.

Signi�cance of 4.0σ combined with the bb channel.
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The Higgs Boson Machine Learning Challenge

The goal of the challenge is to
explore the use of Machine Learning
tools to improve the discovery
signi�cance of the experiment.

Simulated samples of data are
provided.

The task is to classify into
signal and background.

Signal ττ decay of a
Higgs boson.

Background W,Z decays, tt̄
products.

Z. Kassabov Computational methods applied to Particle Physics 7 / 26



The Higgs Boson Machine Learning Challenge

The goal of the challenge is to
explore the use of Machine Learning
tools to improve the discovery
signi�cance of the experiment.

Simulated samples of data are
provided.

The task is to classify into
signal and background.

Signal ττ decay of a
Higgs boson.

Background W,Z decays, tt̄
products.

Z. Kassabov Computational methods applied to Particle Physics 7 / 26



The Higgs Boson Machine Learning Challenge

The goal of the challenge is to
explore the use of Machine Learning
tools to improve the discovery
signi�cance of the experiment.

Simulated samples of data are
provided.

The task is to classify into
signal and background.

Signal ττ decay of a
Higgs boson.

Background W,Z decays, tt̄
products.

Z. Kassabov Computational methods applied to Particle Physics 7 / 26



Contents

1 Introduction
Higgs fermionic decay
The Higgs Boson Machine Learning Challenge

2 Machine Learning
Types of learning
An example
Dimensionality

3 Detection of the Higgs boson decays
Data collection at ATLAS
Data simulation
The target process

4 Implementation of a classi�er
The classi�cation problem
Chosen method

Z. Kassabov Computational methods applied to Particle Physics 8 / 26



Introduction

Machine Learning is a �eld concerned with developing algorithms that can
learn from data.

Supervised learning Given a set of datapoints where the desired output is
known, predict the output for unseen datapoints
(classi�cation, regression): Generalize.

Unsupervised learning Given a dataset where the output is unknown,
discover structure in the data (clustering).
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Example: Regression problem

Given the set of data points D = {(x1, y1), ..., (xn, yn)} with xi, yi ∈ R,
�nd a function f(x)→ R that generalizes them (ie is able to make a good
prediction for new points generated by the same underlying model).

Good Maximize some score function.

Typically split the known points into a training set and a test set.

Classi�cation The same, but f(x)→ {−1, 1}
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Example: Regression problem

Data Points

Underlying Model

Regression problem:

Predicting the known data is
not enough: We need a priori
knowledge.

Too strong assumptions about
the model will lead to bad
predictions.

Di�erent ML algorithms
propose di�erent solutions to
�nding an appropriate
bias/variance compromise.
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Example: Regression problem

Data Points

Underlying Model

Linear Regression

Regression problem:

Predicting the known data is
not enough: We need a priori
knowledge.

Too strong assumptions about
the model will lead to bad
predictions.

Di�erent ML algorithms
propose di�erent solutions to
�nding an appropriate
bias/variance compromise.
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Example: Regression problem

Data Points

Underlying Model

Gaussian Process

Regression problem:

Predicting the known data is
not enough: We need a priori
knowledge.

Too strong assumptions about
the model will lead to bad
predictions.

Di�erent ML algorithms
propose di�erent solutions to
�nding an appropriate
bias/variance compromise.
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Dimensionality

One of the main challenges of the ML algorithms is to scale with the
dimensionality of the feature space.

Number of points required to sample the space ∼ 10d.

Computational e�ciency of some algorithms scales badly with d.

Feature extraction or feature reduction are frequently used.
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The detectors of ATLAS

Inner tracking detector:
Momenta of charged particles.

Electromagnetic calorimeter:
Energy of photons and
electrons.

LAr calorimeter: Energy of
hadrons and absorber.

Muon spectrometer: Detects
energy/momentum of muons.
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The detectors of ATLAS

Particle energy and momentum
over 98% of the solid angle.

Identi�cation of electrons,
muons and photons.

Transverse momentum
balance: neutrinos inferred.
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Data simulation

The data provided for the challenge is simulated:

1 Random proton-proton collisions are simulated using Monte Carlo
Event generators.

2 Cross sections are estimated from QCD theoretical calculations.

3 The resulting particles are tracked trough a virtual model of the
detectors.

4 30 physical observables are provided for the challenge.
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Higgs fermionic decay

In the challenge, we are interested in the process (signal):

H −→ τ−τ+ −→ (l + 2ν) + (hadrons + ν)

l ∈ {e±, µ±), ν ∈ {νe, νµ, ντ , νe, νµ, ντ}

There are background events from:

Z −→ τ−τ+

tt→ bb̄+W+W− → τ+τ− + hadrons + 2ν

W → (wrong identi�cation)
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The classi�cation problem

Let D be the training sample:

D = {(x1, y1, w1), ..., (xn, yn, wn)}

where:

xi ∈ Rd: Feature vector.
yi ∈ {b ≡ ”background”, s ≡ ”signal”}: Label
wi ∈ R+: Weight.

Find a classi�er g : Rd → {b, s} that maximizes the Approximate Median
Signi�cance.
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Chosen method

The �rst submission uses a Gradient Boosting Classi�er:

Use many weak algorithms to produce a strong prediction.

Similar to the ATLAS analysis strategy.

Train di�erent classi�ers for di�erent numbers of jets and for the case
of mass not provided.
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Gradient Boosting Classi�er Formulation

g(x) =

M∑
m=1

γmhm(x)

hm weak learners (decision trees).

hm chosen to minimize some loss function L(yi, xi) at each iteration:

gm(x) = gm−1(x) + arg min
h

n∑
i=1

L(yi, gm−1(xi)− h(x))

The minimization is performed by the steepest descent method:

gm(x) = gm−1(x) + γm

n∑
i=1

∇gL(yi, gm−1(xi))

γm = arg min
γ

n∑
i=1

L

(
yi, gm−1(xi)− γ

∂L(yi, Fm−1(xi))

∂Fm−1(xi)

)
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Results

The �rst submission obtained an AMS score of 3.376.

Score

Random Submission 0.58

Simple Window 1.54

Naive Bayes 2.06

Simple Boosted Trees 3.25

AdaBoost 3.34

My submission 3.38

Best submission 3.81

ATLAS (real signi�cance) 4.1
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Next steps

Reduce over�tting.

Tweak parameters.

Explore other methods.
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