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Objective

New constraints on the WIMP-nucleon scattering
cross section.
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The idea of the method

What’s the idea?

ν 

µ 

detector 

DM Capture: 

ρDM, f(u)d3u, σscattering, solar composition,  

astrophysics 

Annihilation region: 

σann., interaction of annihilation  

products with solar medium,  

showering (neutrino production) 

Neutrino propagation: 

MSW, τ-regeneration,  

vacuum oscillations 

Detection: 

signal / background spectra 
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The idea of the method

Constraining σscattering with indirect detection?

Differential equation governing the dark matter density

dNSun
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dt = ΓC − CA
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⇒ For t� � τ : constraints on the annihilation rate ⇒
constraints on the scattering rate!

⇒ For t� � τ , the annihilation rate is heavily suppressed

Equilibration is model-dependent (see P1)
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The idea of the method

Which annihilation can be studied?
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q

q̄
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B−

Limits so far
calculated for e.g.

W+W−, bb̄
(PRL.110.131302)

obviously yielding
high ν-flux:
τ+τ−, tt̄, ZZ
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The idea of the method

Can the final states `¯̀ or qq̄ yield a high-energy ν-flux?

Yes, they can! Account for higher-order effects:

Electroweak final state radiation (FSR),
e.g. DMDM→ e+e− → e+W−νe
Highly-energetic gluons, W± or Z -bosons at loop level,
e.g. DMDM→ e+e− → ZZ → neutrinos

Dark matter models with Internal Bremsstrahlung features,
e.g. DMDM→ uR ūRZ , Z → neutrinos
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A dark matter toy model with internal bremsstrahlung (P1,P2)

The model

Toy model extension of the SM:

additional Majorana fermion (DM particle) χ
(1, 1, 0) w.r.t. SU (3)C × SU (2)L × U (1)Y
additional scalar η

L = LSM + Lχ + Lη + Lfermion
int + Lscalar

int

Lfermion
int = −y χ̄fRη + h.c.

Lscalar
int = −λ3

(
Φ†Φ

) (
η†η
)

assumed to be 0

⇒ 3 free parameters of the model: mχ,mη/mχ, y .

Toy model can be recovered in the MSSM.
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A dark matter toy model with internal bremsstrahlung (P1,P2)

Annihilation in the toy model
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(hhhhhWIMPSim

→ own routines needed
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A dark matter toy model with internal bremsstrahlung (P1,P2)

Annihilation in the toy model
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Dominant annihilation channel for mη/mχ ≥ 2− 3

Amplitudes for gg , γγ, γZ known from MSSM-studies, amplitudes
for ZZ calculated for the first time.
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A dark matter toy model with internal bremsstrahlung (P1,P2)

Limits on the SD cross section in our model
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Model-independent analyses (P2)
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Model-independent analyses (P2)

Scenario with generic contact interaction

Under the assumption of equilibrium in the Sun (ΓA = 1
2 ΓC),

we generalize to a generic contact interation:

Case 1:

DM
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Case 2:

DM

DM

V
f

V ′f̄

Benchmark cases of either pure σSD or pure σSI analyzed
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Model-independent analyses (P2)

CASE 1: Limits from IceCube on σSD – leptons
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Model-independent analyses (P2)

CASE 2: Limits from IceCube on σSD – leptons
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Conclusions & Outlook

Conclusion & Outlook

Conclusions

Higher-order corrections to annihilation processes in the Sun
yield competitive constraints for

dark matter coupling to light quarks
leptophilic dark matter

Method is interesting for both special models and
model-independent scenarios

Outlook

The assumption of equilibration is vital for feasibility of the
method in the future → discussed in P1

Limits on anapole/dipole moment in leptophilic models are
calculable (Ibarra & Wild, in preparation)



Strong Dark Matter Constraints from Higher-Order Annihilations in the Sun

Conclusions & Outlook

Conclusion & Outlook

Conclusions

Higher-order corrections to annihilation processes in the Sun
yield competitive constraints for

dark matter coupling to light quarks
leptophilic dark matter

Method is interesting for both special models and
model-independent scenarios

Outlook

The assumption of equilibration is vital for feasibility of the
method in the future → discussed in P1

Limits on anapole/dipole moment in leptophilic models are
calculable (Ibarra & Wild, in preparation)



Strong Dark Matter Constraints from Higher-Order Annihilations in the Sun

Conclusions & Outlook

Thank you for your attention!
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Backup

Capture

Capture processes for coupling to uR

If χ couples to uR , the relevant processes for capture in the Sun
are at tree level
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Where a thermal relic coupling to uR is in equilibrium

100 103 104
10−2

10−1

1

mχ [GeV]

m
η
/m

χ
−

1

2ΓA/ΓC for coupling to uR with y = ythermal – Prospects

no thermal relic

non-pert.

XENON1T
0.9

t� = teq.

0.5

2ΓA/ΓC = 0.1

CMS αT

CMS αT/

Razor+ISR



Strong Dark Matter Constraints from Higher-Order Annihilations in the Sun

Backup

Capture

Where a thermal relic coupling to bR is in equilibrium

102 103 104
10−2

10−1

1

mχ [GeV]

m
η
/m

χ
−

1
2ΓA/ΓC for coupling to bR with y = ythermal – Prospects

2ΓA/ΓC = 0.01

0.1

0.1

t� = teq.

0.9

no thermal relic

XENON1T

⇒ Only small regions in parameter space correspond to
equilibrium.



Strong Dark Matter Constraints from Higher-Order Annihilations in the Sun

Backup

Capture

Where a thermal relic coupling to bR is in equilibrium

102 103 104
10−2

10−1

1

mχ [GeV]

m
η
/m

χ
−

1
2ΓA/ΓC for coupling to bR with y = ythermal – Prospects

2ΓA/ΓC = 0.01

0.1

0.1

t� = teq.

0.9

no thermal relic

XENON1T

⇒ Only small regions in parameter space correspond to
equilibrium.



Strong Dark Matter Constraints from Higher-Order Annihilations in the Sun

Backup

Capture

The case of asymmetric capture of particle-antiparticle
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Figure : Annihilation rate as a function of time for different capture rates in
case the relic dark matter density consists of particles and antiparticles.
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Capture rates in the Sun or the Earth – Comparison
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Figure : Capture rates in the Sun and the Earth for a generic scattering cross
section value of 10−40 cm2, local dark matter density of 0.4GeVcm−3 and a
Maxwell-Boltzmann distribution with 3D velocity dispersion of 270 kms−1 and
a galactic escape speed of 600 kms−1 that truncates the velocity distribution.
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The dependence of the annihilation constant with mass

The annihilation constant in the Sun is found to scale as
m

3/2
DM 〈σannv〉. This arises from the fact that

CA = 〈σannv〉

R�∫
0

4πr2n2 (r) dr[
R�∫
0

4πr2n (r)dr

]2

n (r) = n0 exp (−mΦ (r) /T )

Φ (r) ≈ Cρr2

In the last line, it was used that the density of dark matter is
centered closely around the core even for small dark matter masses
of about 50GeV. With this result, one gets the mentioned

proportionality to m
3/2
DM to a very good approximation.
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Example: Neutrino spectra at Earth – energy loss
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Annihilation processes – branching fractions
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IceCube and our statistical analysis
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Figure : Optimal cut angles φcut for a given mass splitting of
mη/mχ = 1.1. Higher dark matter masses lead to neutrinos with higher
average energy. Their tracks can be reconstructed with higher accuracy
and hence the optimal cone angle decreases.
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Constraints on the Yukawa coupling - case of uR , small
mass splitting
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Limits from IceCube

Constraints on the Yukawa coupling - case of uR , larger
mass splitting
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CASE 1: Limits from IceCube on σSI – leptons
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CASE 2: Limits from IceCube on σSI – leptons
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eLēL + νeν̄e or
µLµ̄L + νµν̄µ

LUX
XENON 100



Strong Dark Matter Constraints from Higher-Order Annihilations in the Sun

Backup

Limits from IceCube

CASE 1: Limits from IceCube on σSD – quarks
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uLūR

dLd̄R

SIMPLE

COUPP

MeV neutrinos
from qq̄

Limits from MeV neutrinos from Bernal et al. (JCAP08(2013)011)



Strong Dark Matter Constraints from Higher-Order Annihilations in the Sun

Backup

Limits from IceCube
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uLūR / dLd̄R

LUX
XENON 100

MeV neutrinos
from qq̄

Limits from MeV neutrinos from Bernal et al. (JCAP08(2013)011)



Strong Dark Matter Constraints from Higher-Order Annihilations in the Sun

Backup

Limits from IceCube

CASE 2: Limits from IceCube on σSI – quarks

DM

DM

V
f

V ′f̄

102 103 104
10−46

10−44

10−42

10−40

10−38

10−36

mDM [GeV]

90
%

C
.L

.l
im

it
on

σ
SI
[c
m

2
]

Annihilation into quarks: limits on σSI
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