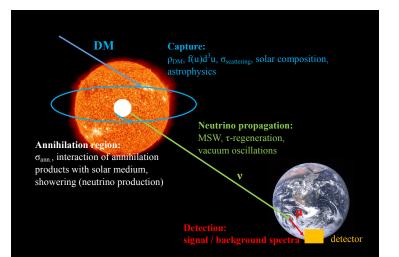
Strong Dark Matter Constraints from Higher-Order Annihilations in the Sun Talk at the 29th IMPRS EPP Workshop Based on JCAP12(2013)043 (P1) and JCAP04(2014)012 (P2) in collaboration with Alejandro Ibarra and Sebastian Wild

Maximilian Totzauer

July 7, 2014

New constraints on the WIMP-nucleon scattering cross section.



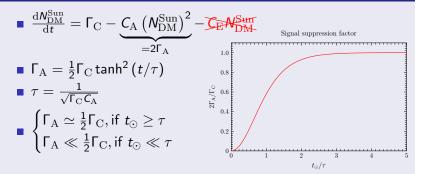
- 2 A dark matter toy model with internal bremsstrahlung (P1,P2)
- 3 Model-independent analyses (P2)
- 4 Conclusions & Outlook

└─ The idea of the method

What's the idea?

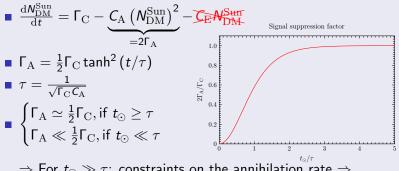

Constraining $\sigma_{\rm scattering}$ with indirect detection?

Constraining $\sigma_{\rm scattering}$ with indirect detection?


$$\frac{\mathrm{d}N_{\mathrm{DM}}^{\mathrm{Sun}}}{\mathrm{d}t} = \Gamma_{\mathrm{C}} - \underbrace{C_{\mathrm{A}} \left(N_{\mathrm{DM}}^{\mathrm{Sun}}\right)^{2}}_{=2\Gamma_{\mathrm{A}}} - \underbrace{C_{\mathrm{E}}N_{\mathrm{DM}}^{\mathrm{Sun}}}_{=2\Gamma_{\mathrm{A}}}$$

Constraining $\sigma_{\rm scattering}$ with indirect detection?

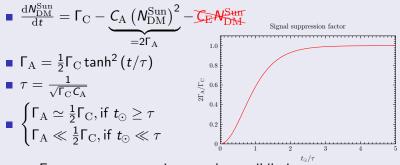
Constraining $\sigma_{\text{scattering}}$ with indirect detection?



Constraining $\sigma_{\text{scattering}}$ with indirect detection?

Constraining $\sigma_{\rm scattering}$ with indirect detection?

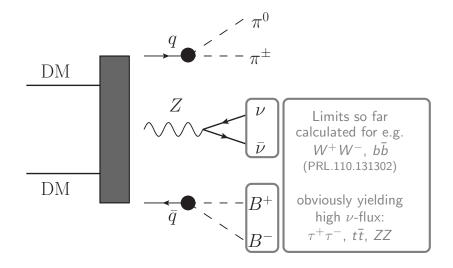
Differential equation governing the dark matter density

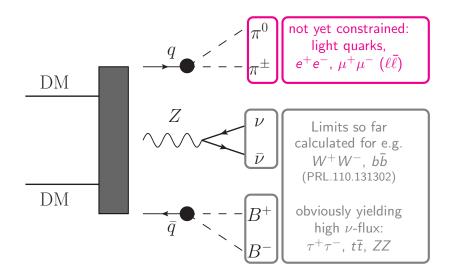


 \Rightarrow For $t_{\odot} \gg \tau$: constraints on the annihilation rate \Rightarrow constraints on the scattering rate!

 \Rightarrow For $t_{\odot}\ll\tau$, the annihilation rate is heavily suppressed

Constraining $\sigma_{\rm scattering}$ with indirect detection?


Differential equation governing the dark matter density


 \Rightarrow For $t_{\odot} \gg \tau$: constraints on the annihilation rate \Rightarrow constraints on the scattering rate!

⇒ For $t_{\odot} \ll \tau$, the annihilation rate is heavily suppressed ■ Equilibration is model-dependent (see P1)

Which annihilation can be studied?

Which annihilation can be studied?

└─ The idea of the method

Can the final states $\ell \bar{\ell}$ or $q\bar{q}$ yield a high-energy ν -flux?

└─ The idea of the method

Can the final states $\ell \bar{\ell}$ or $q \bar{q}$ yield a high-energy ν -flux?

Yes, they can!

Can the final states $\ell \bar{\ell}$ or $q \bar{q}$ yield a high-energy ν -flux?

Yes, they can! Account for higher-order effects:

- Electroweak final state radiation (FSR), e.g. $DMDM \rightarrow e^+e^- \rightarrow e^+W^-\nu_e$
- Highly-energetic gluons, W[±] or Z-bosons at loop level,
 e.g. DM DM → e⁺e⁻ → ZZ → neutrinos
- Dark matter models with Internal Bremsstrahlung features, e.g. $DMDM \rightarrow u_R \bar{u}_R Z$, $Z \rightarrow neutrinos$

A dark matter toy model with internal bremsstrahlung (P1,P2)

1 The idea of the method

2 A dark matter toy model with internal bremsstrahlung (P1,P2)

3 Model-independent analyses (P2)

4 Conclusions & Outlook

A dark matter toy model with internal bremsstrahlung (P1,P2)

The model

Toy model extension of the SM:

- additional Majorana fermion (DM particle) χ (1,1,0) w.r.t. $SU(3)_C \times SU(2)_I \times U(1)_Y$
- additional scalar η

A dark matter toy model with internal bremsstrahlung (P1,P2)

The model

- Toy model extension of the SM:
 - additional Majorana fermion (DM particle) χ (1,1,0) w.r.t. SU(3)_C × SU(2)_L × U(1)_Y
 - additional scalar η

$$\begin{aligned} & \mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{\chi} + \mathcal{L}_{\eta} + \mathcal{L}_{int}^{fermion} + \mathcal{L}_{int}^{scalar} \\ & \mathcal{L}_{int}^{fermion} = -y\bar{\chi}f_{R}\eta + \text{h.c.} \\ & \mathcal{L}_{int}^{scalar} = -\lambda_{3}\left(\Phi^{\dagger}\Phi\right)\left(\eta^{\dagger}\eta\right) \text{assumed to be 0} \end{aligned}$$

A dark matter toy model with internal bremsstrahlung (P1,P2)

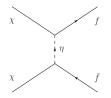
The model

- Toy model extension of the SM:
 - additional Majorana fermion (DM particle) χ (1,1,0) w.r.t. $SU(3)_C \times SU(2)_L \times U(1)_Y$
 - additional scalar η

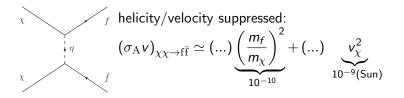
•
$$\mathcal{L}_{int}^{\text{fermion}} = -y\bar{\chi}f_R\eta + \text{h.c.}$$

- $\mathcal{L}_{\mathrm{int}}^{\mathrm{scalar}} = -\lambda_3 \left(\Phi^{\dagger} \Phi \right) \left(\eta^{\dagger} \eta \right)$ assumed to be 0
- \Rightarrow 3 free parameters of the model: $m_{\chi}, m_{\eta}/m_{\chi}, y$.

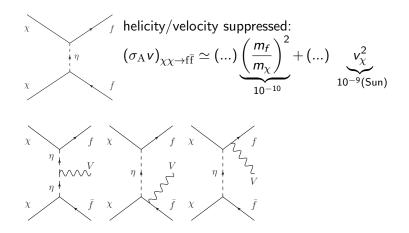
A dark matter toy model with internal bremsstrahlung (P1,P2)

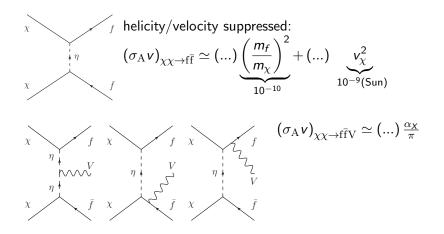

The model

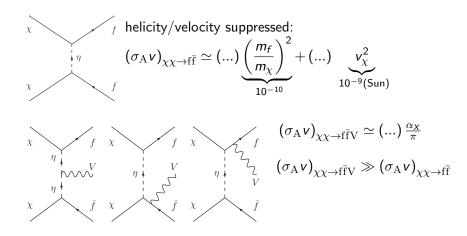
- Toy model extension of the SM:
 - additional Majorana fermion (DM particle) χ (1,1,0) w.r.t. $SU(3)_C \times SU(2)_L \times U(1)_Y$
 - additional scalar η

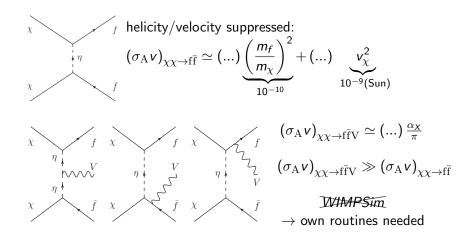

•
$$\mathcal{L}_{int}^{\text{fermion}} = -y\bar{\chi}f_R\eta + \text{h.c.}$$

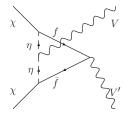
- $\mathcal{L}_{\mathrm{int}}^{\mathrm{scalar}} = -\lambda_3 \left(\Phi^{\dagger} \Phi \right) \left(\eta^{\dagger} \eta \right)$ assumed to be 0
- \Rightarrow 3 free parameters of the model: $m_{\chi}, m_{\eta}/m_{\chi}, y$.
- Toy model can be recovered in the MSSM.

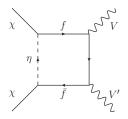

A dark matter toy model with internal bremsstrahlung (P1,P2)


A dark matter toy model with internal bremsstrahlung (P1,P2)

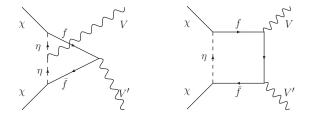

A dark matter toy model with internal bremsstrahlung (P1,P2)


A dark matter toy model with internal bremsstrahlung (P1,P2)

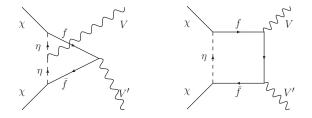

A dark matter toy model with internal bremsstrahlung (P1,P2)



A dark matter toy model with internal bremsstrahlung (P1,P2)


A dark matter toy model with internal bremsstrahlung (P1,P2)

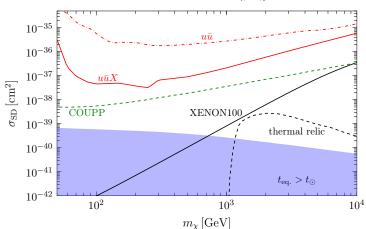
A dark matter toy model with internal bremsstrahlung (P1,P2)


Annihilation in the toy model

Dominant annihilation channel for $m_\eta/m_\chi \ge 2-3$

A dark matter toy model with internal bremsstrahlung (P1,P2)

Annihilation in the toy model



Dominant annihilation channel for $m_\eta/m_\chi \ge 2-3$

Amplitudes for gg, $\gamma\gamma$, γZ known from MSSM-studies, amplitudes for ZZ calculated for the first time.

A dark matter toy model with internal bremsstrahlung (P1,P2)

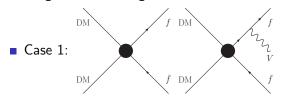
Limits on the SD cross section in our model

Coupling to *u*-quarks, $m_{\eta}/m_{\chi} = 1.01$

1 The idea of the method

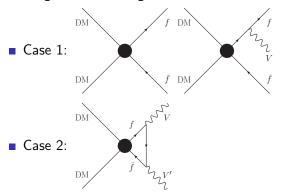
2 A dark matter toy model with internal bremsstrahlung (P1,P2)

3 Model-independent analyses (P2)

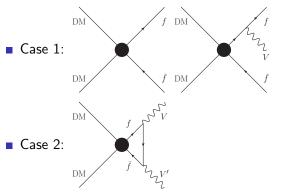

4 Conclusions & Outlook

Scenario with generic contact interaction

• Under the assumption of equilibrium in the Sun ($\Gamma_A = \frac{1}{2}\Gamma_C$), we generalize to a generic contact interation:

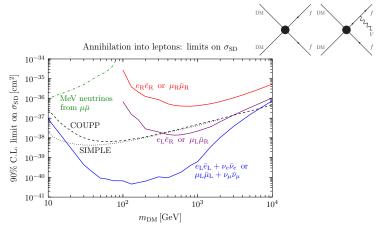

Scenario with generic contact interaction

• Under the assumption of equilibrium in the Sun ($\Gamma_A = \frac{1}{2}\Gamma_C$), we generalize to a generic contact interation:


Scenario with generic contact interaction

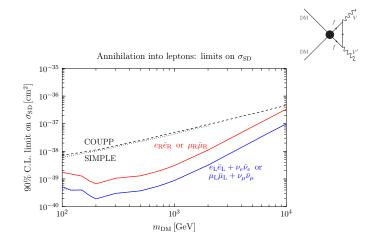
• Under the assumption of equilibrium in the Sun ($\Gamma_A = \frac{1}{2}\Gamma_C$), we generalize to a generic contact interation:

Scenario with generic contact interaction


• Under the assumption of equilibrium in the Sun ($\Gamma_A = \frac{1}{2}\Gamma_C$), we generalize to a generic contact interation:

Benchmark cases of either pure σ_{SD} or pure σ_{SI} analyzed

Model-independent analyses (P2)


CASE 1: Limits from IceCube on σ_{SD} – leptons

Limits from MeV neutrinos from Bernal et al. (JCAP08(2013)011)

Model-independent analyses (P2)

CASE 2: Limits from IceCube on σ_{SD} – leptons

Conclusions & Outlook

Conclusion & Outlook

Conclusions

- Higher-order corrections to annihilation processes in the Sun yield competitive constraints for
 - dark matter coupling to light quarks
 - leptophilic dark matter
- Method is interesting for both special models and model-independent scenarios

Conclusions & Outlook

Conclusion & Outlook

Conclusions

 Higher-order corrections to annihilation processes in the Sun yield competitive constraints for

- dark matter coupling to light quarks
- leptophilic dark matter
- Method is interesting for both special models and model-independent scenarios

Outlook

- \blacksquare The assumption of equilibration is vital for feasibility of the method in the future \rightarrow discussed in P1
- Limits on anapole/dipole moment in leptophilic models are calculable (Ibarra & Wild, in preparation)

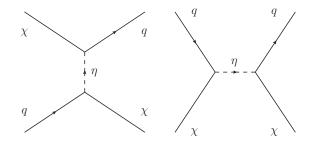
Conclusions & Outlook

Thank you for your attention!

Backup

Capture

Capture processes for coupling to u_R


If χ couples to $u_{R},$ the relevant processes for capture in the Sun are at tree level

Backup

Capture

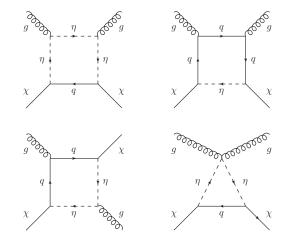
Capture processes for coupling to u_R

If χ couples to $u_{R},$ the relevant processes for capture in the Sun are at tree level

Backup

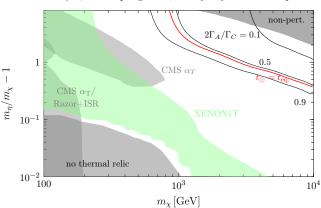
Capture

Capture processes for coupling to b_R


If χ couples to $b_{R},$ the relevant processes for capture in the Sun are at one-loop level

Backup

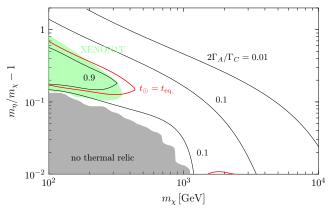
Capture


Capture processes for coupling to b_R

If χ couples to $b_R,$ the relevant processes for capture in the Sun are at one-loop level

Capture

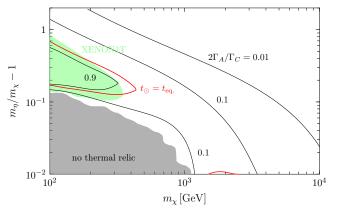
Where a thermal relic coupling to u_R is in equilibrium



 $2\Gamma_{\rm A}/\Gamma_{\rm C}$ for coupling to u_R with $y = y_{\rm thermal}$ – Prospects

Capture

Where a thermal relic coupling to b_R is in equilibrium


 $2\Gamma_{\rm A}/\Gamma_{\rm C}$ for coupling to b_R with $y = y_{\rm thermal}$ – Prospects

Capture

Where a thermal relic coupling to b_R is in equilibrium

 $2\Gamma_{\rm A}/\Gamma_{\rm C}$ for coupling to b_R with $y = y_{\rm thermal}$ – Prospects

 \Rightarrow Only small regions in parameter space correspond to equilibrium.

Capture

The case of asymmetric capture of particle-antiparticle

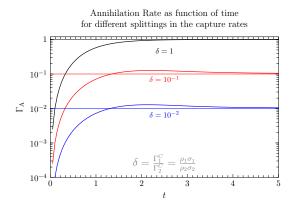


Figure : Annihilation rate as a function of time for different capture rates in case the relic dark matter density consists of particles and antiparticles.

Capture

Capture rates in the Sun or the Earth – Comparison

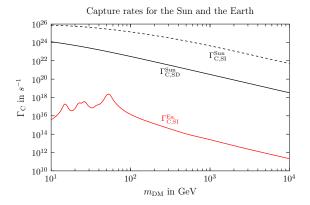


Figure : Capture rates in the Sun and the Earth for a generic scattering cross section value of $10^{-40} \,\mathrm{cm}^2$, local dark matter density of 0.4 GeVcm^{-3} and a Maxwell-Boltzmann distribution with 3D velocity dispersion of 270 kms^{-1} and a galactic escape speed of 600 kms^{-1} that truncates the velocity distribution.

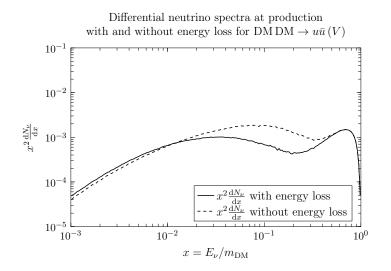
r

Backup

Annihilation

The dependence of the annihilation constant with mass

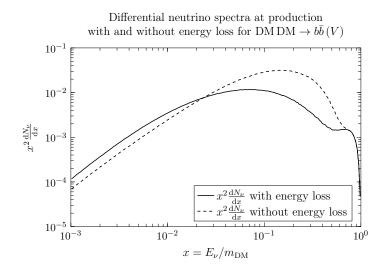
The annihilation constant in the Sun is found to scale as $m_{\rm DM}^{3/2} \langle \sigma_{\rm ann} v \rangle$. This arises from the fact that


$$C_{\rm A} = \langle \sigma_{\rm ann} v \rangle \frac{\int\limits_{0}^{R_{\odot}} 4\pi r^2 n^2(r) \, \mathrm{d}r}{\left[\int\limits_{0}^{R_{\odot}} 4\pi r^2 n(r) \, \mathrm{d}r\right]^2}$$
$$n(r) = n_0 \exp\left(-m\Phi(r)/T\right)$$
$$\Phi(r) \approx C\rho r^2$$

In the last line, it was used that the density of dark matter is centered closely around the core even for small dark matter masses of about 50 GeV. With this result, one gets the mentioned proportionality to $m_{\rm DM}^{3/2}$ to a very good approximation.

Backup

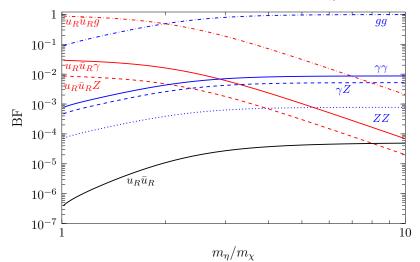
Annihilation


Example: Neutrino spectra at Earth – energy loss

Backup

Annihilation

Example: Neutrino spectra at Earth – energy loss



Backup

Annihilation

Annihilation processes – branching fractions

Branching fractions for coupling to u_R and $m_{\chi} = 1000 \text{GeV}$

Strong Dark Matter Constraints from Higher-Order Annihilations in the Sun

└─ IceCube and our statistical analysis

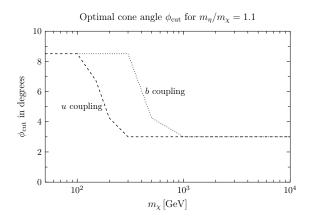
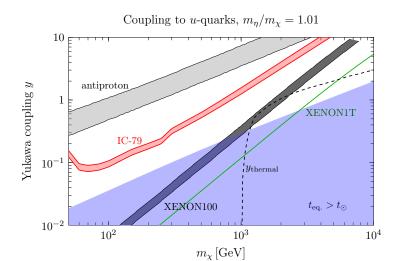
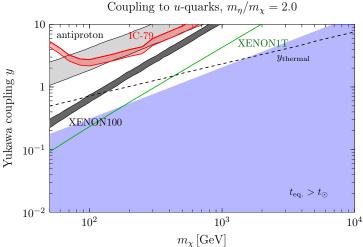



Figure : Optimal cut angles $\phi_{\rm cut}$ for a given mass splitting of $m_{\eta}/m_{\chi} = 1.1$. Higher dark matter masses lead to neutrinos with higher average energy. Their tracks can be reconstructed with higher accuracy and hence the optimal cone angle decreases.

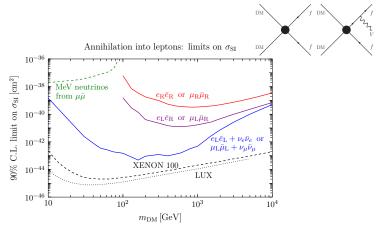
Backup

Limits from IceCube


Constraints on the Yukawa coupling - case of u_R , small mass splitting

Backup

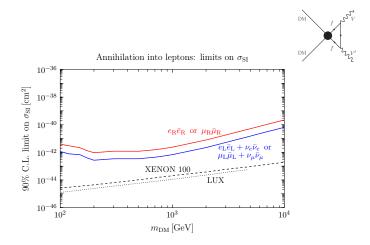
Limits from IceCube


<u>Constraints on the Yukawa coupling</u> - case of u_R , larger mass splitting

Backup

Limits from IceCube

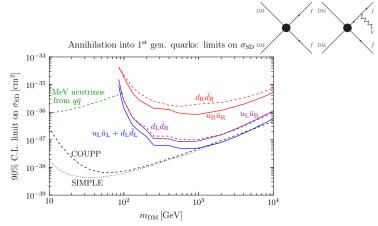
CASE 1: Limits from IceCube on σ_{SI} – leptons



Limits from MeV neutrinos from Bernal et al. (JCAP08(2013)011)

Backup

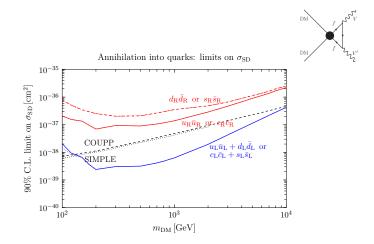
Limits from IceCube


CASE 2: Limits from IceCube on σ_{SI} – leptons

Backup

Limits from IceCube

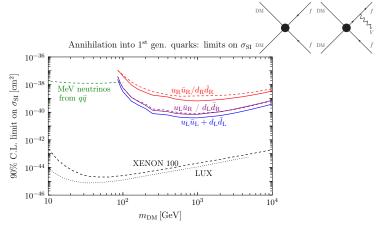
CASE 1: Limits from IceCube on σ_{SD} – quarks



Limits from MeV neutrinos from Bernal et al. (JCAP08(2013)011)

Backup

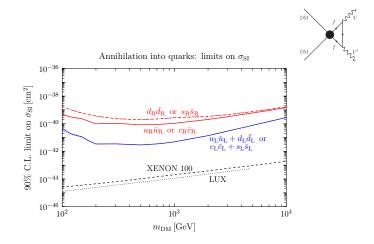
Limits from IceCube


CASE 2: Limits from IceCube on σ_{SD} – quarks

Backup

Limits from IceCube

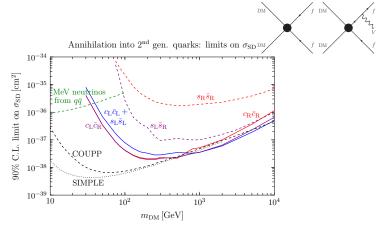
CASE 1: Limits from IceCube on σ_{SI} – quarks



Limits from MeV neutrinos from Bernal et al. (JCAP08(2013)011)

Backup

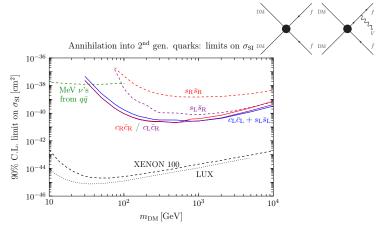
Limits from IceCube


CASE 2: Limits from IceCube on σ_{SI} – quarks

Backup

Limits from IceCube

CASE 1: Limits from IceCube on σ_{SD} – quarks



Limits from MeV neutrinos from Bernal et al. (JCAP08(2013)011)

Backup

Limits from IceCube

CASE 1: Limits from IceCube on σ_{SI} – quarks

Limits from MeV neutrinos from Bernal et al. (JCAP08(2013)011)