Hadronic energy reconstruction in the combined electromagnetic and hadronic calorimeter system of the CALICE Collaboration

Miroslav Gabriel

MPP/TUM

29th IMPRS Workshop July 7th 2014

Overview

- 1 ILC and Calorimetry
- 2 Basic Reconstruction
- 3 Local Software Compensation
- 4 Summary

Future Linear Colliders

 e^+e^- -Colliders to complement LHC:

• Synchrotron radiation increases with E

 \Rightarrow Only linear acc. can very reach high energies for e^+e^-

International Linear Collider (TDR published in 2013):

 Staged Implementation 250 GeV, 350 GeV, 500 GeV (upgrade to 1 TeV possible)

•
$$\mathcal{L} = 2 \cdot 10^{34} \frac{1}{cm^2 s}$$

Benefits for Physics:

- Exploration of Electroweak sector
- Model Independent Measurements
- Low Background

Physics

Guaranteed Program

- Higgs measurements:
 - Couplings to fermions and bosons (including c, g)
 - Self-coupling
 - Total width
 - Top Yukawa coupling
- Top physics:
 - Measurements at threshold
 - Precise mass, width
- Precision physics:
 - Electroweak
 - QCD

One important measurement:

- Model-independent
- Identify Higgs production from Z recoil irrespective of Higgs decay

Summary

Physics

Possible Discoveries:

- Direct Production of new particles up to $\sqrt{s}/2$
- Indirect(Modeldependent) search for New Physics

Design of Detectors

- Vertex and TPC for precise tracking
- Electromagnetic calorimeter for γ and e^-e^+ energy
- Hadronic calorimeter for charged and neutral hadrons
 ⇒ HCal energy resolution is

Bottleneck for standard jet reconstruction

• Solenoid and return yoke

Higher precision:

Max-Planck-Institut für Physik

- Combine tracking and calorimetry information \Rightarrow Particle Flow
- Assignment $E_{deposit}$ to right particle crucial \Rightarrow Requires high spatial resolution in calorimeters

Particle Flow concept dictates calorimeter design

Calorimetry

Incoming particle:

- Destructive measurement: Total absorption
- Different interactions(Bremsstrahlung, pair production, inelastic hadronic interactions, spallation etc.)
- Particle multiplication yield cascades
- Electromagnetic and hadronic showers
- Governed by X_0 O(1 cm) and λ_{int} O(15 cm)
- High granularity for particle separation

π

Design of a Calorimeter?

 λ_{int}

CALICE Prototype

Highly Granular Sampling Calorimeters:

- Most energy deposited in absorber plates
- Conversion factor needed $E_{seen} \cdot C = E_{total}$
- Three different sub-detectors \Rightarrow Inter-calibration
- 20000 Channels

Two ways for energy reconstruction

Basic Reconstruction

Calorimetry is counting of shower particles:

- $E \propto N \Rightarrow E_{toal} = \sum_{ECalhits} E_{hit} \cdot \omega$
- ω accounts for sampling fraction!
- Introduce one weight per sub-detector
- ω_{ECal} , ω_{HCal} and ω_{TCMT} account for inter calibration

Determination of calibration factors?

Use of χ^2 minimization procedure

$$\chi^{2} = \sum_{events} \left(\sum_{\textit{ECalhits}} E_{\textit{hit}} \omega_{\textit{ECal}} + \sum_{\textit{AHCalhits}} E_{\textit{hit}} \omega_{\textit{AHCal}} + \sum_{\textit{TCMThits}} E_{\textit{hit}} \omega_{\textit{TCMT}} - E_{\textit{beam}} \right)^{2}$$

Reconstructed Energy

Calib. factors calculated with data and MC: $% \label{eq:calculated}$

- Energy independent calibration factors
- Data reconstructed with factors from MC ⇒ Constant offset
- MC does not perfectly reproduce visible energy

ECal	0.0049	GeV MIP
AHCal	0.029	<u>GeV</u> MIP
тсмт	0.031	GeV MIP

Table: Factors from data

Resolution

Enhance the resolution?

⇒ Local Software Compensation

e-

Xn=0(1 cm)

e

evaporation

neutron

 $\lambda_{int} = 0(15 \text{ cm})$

secondary

particles

em shower

hadronic shower

tertiary

particles

The Idea of Software Compensation

Electromagnetic showers:

- Solely composed of $\gamma, e^- \rightarrow E_{visivle} \propto E_{deposit}$
- Large number of particles in each events
- Governed by X_0 O(1 cm) \rightarrow Large Energy Density

Hadronic showers:

Max-Planck-Institut für Physik

- $\pi^0 \rightarrow \gamma \gamma$: em und hadronic component
- Hadronic governed by λ_{int} O(15 cm) \rightarrow Small Energy Density
- Unseen deposits from neutrons, binding energy etc. \rightarrow need larger weight

¶∆_#-∆_{9≥±±} Max-Planck-Institut für Physik

The Implementation of Software Compensation

Assign each Density Bin it's own calibration factor

now 6 ω_i in ECal, 10 ω_j AHCal and 6 ω_k in TCMT \Rightarrow 22 factors i,j,k: Density Bin indexes

The Implementation of Software Compensation

Determination of $\omega_{i,j,k}$ via Minimization:

- Small Density Bin Index
 ⇒ Small energy density
 - \Rightarrow More likely hadronic
 - \Rightarrow Higher weight
- Factors change with *E_{beam}* ⇒ ω_{i,j,k}(*E_{beam}*)
- Iterative
 Parameterization

Reconstructed Energy

Calib. factors again calculated from data and FTFP_BERT:

- Reconstructed energy for MC factors again too low
- Offset decreased to \approx 1-2%

Resolution

Summary

- Calorimeter systems play important role at future linear collider detectors
- Calibration of sub-detectors possible with three constant factors
- Discrimination by energy density \Rightarrow Successful application of Software Compensation enhances Resolution
- Large progress in the simulation of hadronic showers
 ⇒ Results from Simulations and Data on comparable level

Still missing:

Max-Planck-Institut für Physik

• Updated Monte Carlos

Possible next step:

- Further improve at low energies
- Expand analysis to low energy Fermilab data

ILC and Calorimetry

Backup

Run list from CAN-35

Table: List of used data runs.

run	particle	beam energy,	run	particle	beam energy,
number	type	GeV	number	type	GeV
330332	π^{-}	10	330550	π^{-}	45
330643	π^{-}	10	330559	π^{-}	45
330777	π^{-}	10	330961	π^{-}	45
330850	π^{-}	10	330391	π^{-}	50
330328	π^{-}	15	330558	π^{-}	50
330327	π^{-}	18	331335	π^+	50
330649	π^{-}	20	331282	π^+	60
330771	π^{-}	20	331333	π^+	60
330325	π^{-}	25	331334	π^+	60
330650	π^{-}	25	331556	π^{-}	60
331298	π^+	30	331568	π^{-}	60
331340	π^+	30	331655	π^{-}	60
330551	π^{-}	35	331664	π^{-}	60
330960	π^{-}	35	330392	π^{-}	80
330390	π^{-}	40	330962	π^{-}	80
330412	π^{-}	40	331280	π^+	80
330560	π^{-}	40	331324	π^+	80
331338	π^+	40	331554	π^{-}	80
331339	π^+	40	331567	π^{-}	80
f t			331654	π^{-}	80 🌈

Max-Planck-Institut für Physik

Energy Dependence of Weights

Parameterization Iterative Procedure:

- 1. Minimize
- 2. Fix parameter 3
- 3. Minimize
- 4. Fix parameter 2
- 5. Minimize

ForExample :

• $p_1(E) = c_1 + E * c_2 + c_3 * Exp^{c_4 * E}$

•
$$p_2(E) = b_1 * E + b_2$$

• $p_3(E) = a_1 * (1 - Exp^{a_2 * E}) + a_3$

Summary

Backup slides

Constant calib. factors from FTFP BERT

ECal	0.004675	GeV MIP
AHCal	0.02796	GeV
тсмт	0.02216	<u>GeV</u> MIP

Table: Factors from FTFP_BERT

ECal	0.0049	GeV MIP
AHCal	0.029	GeV
TCMT	0.0309	GeV MIP

Table: Factors from data

