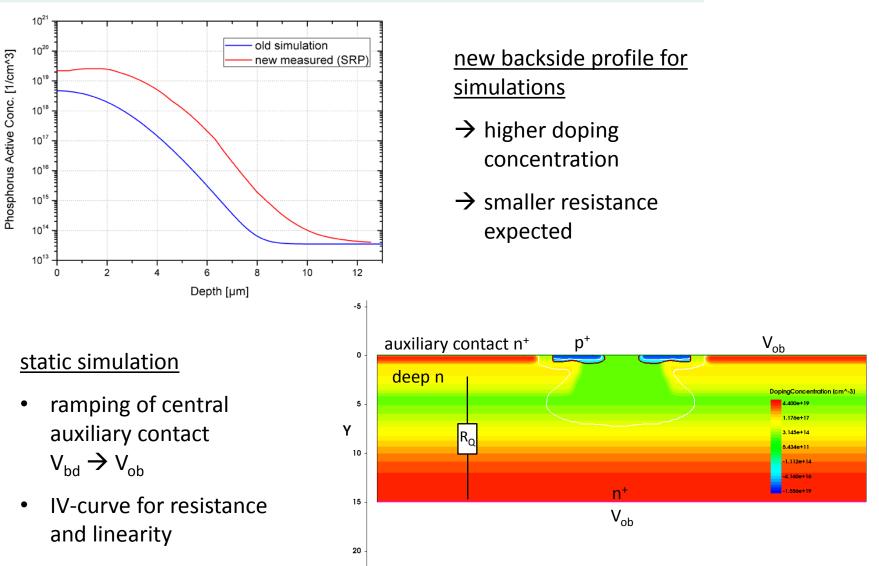


Simulations for SiMPI devices with active quenching

Collaboration Meeting


1st July 2014

Stefan Petrovics

Static Simulations – R_Q

10

20

Х

30

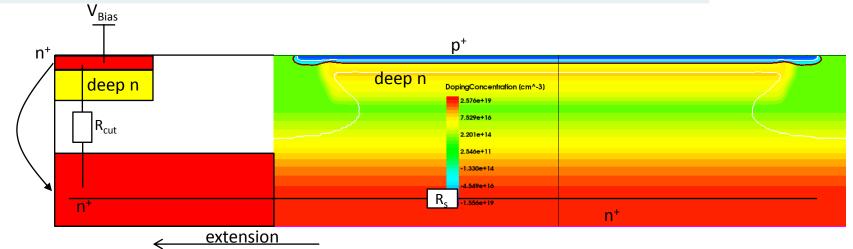
40

0

50

Static Simulations – R_o

Annealing Thick	Pitch	Gap	Bulklvl Rquench R^2
Scenario um	um	um	1/cm^3 Ohm
11	11	50	10 3.51E+13 13.23155 0.9998
4	11	50	10 3.16E+13 14.93085 0.9999
4	11	50	10 3.51E+13 14.92576 0.9999
4	11	50	10 3.86E+13 14.92068 0.9999
11	13	50	10 3.51E+13 81.13606 0.9948
4	13	50	10 3.16E+13 81.55187 0.996
4	13	50	10 3.51E+13 81.3905 0.996
4	13	50	10 3.86E+13 81.22973 0.996
11	15	50	10 3.51E+13 369.0609 0.9832
4	15	50	10 3.16E+13 362.3192 0.983
4	15	50	10 3.51E+13 359.8857 0.9834
4	15	50	10 3.86E+13 357.4805 0.983
11	17	50	10 3.51E+13 1171.727 0.973
4	17	50	10 3.16E+13 1180.422 0.9720
4	17	50	10 3.51E+13 1161.97 0.9729
4	17	50	10 3.86E+13 1144.004 0.9732
11	20	50	10 3.51E+13 4032.439 0.9682
4	20	50	10 3.16E+13 4251.978 0.9658
4	20	50	10 3.51E+13 4098.02 0.9679
4	20	50	10 3.86E+13 3953.026 0.969
11	7	50	10 3.51E+13 0.83326
4	7	50	10 3.16E+13 0.82835
4	7	50	10 3.51E+13 0.82835
4	7	50	10 3.86E+13 0.82834
11	9	50	10 3.51E+13 3.35012 0.9999
4	9	50	10 3.16E+13 3.25649
4	9	50	10 3.51E+13 3.25637
4	9	50	10 3.86E+13 3.25625
4	15	50	16 3.16E+13 504.4965 0.9820
4	15	50	16 3.51E+13 500.9314 0.9823
4	15	50	16 3.86E+13 497.4089 0.9820


Summary:

Wafer 4		Deviation from		R^2
Thickness [µm]	R_q [Ohm]	Bulk (10%)	Gap(16)	
9	3.25	0		1
11	14.925	0.005		0.99992
13	81.39	0.16		0.99614
15	359.88	2.4	500	0.98347
17	1161.97	17		0.97293
20	4098	150		0.96791

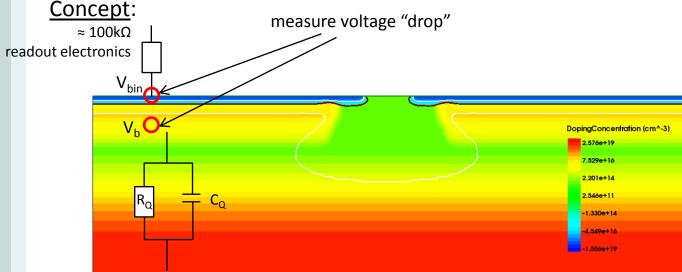
- negligible influence of bulk variation
- thicknesses up to $15\mu m$ provide $R < 1k\Omega$
- resistance scales to gap in accordance with equation
- very linear behavior

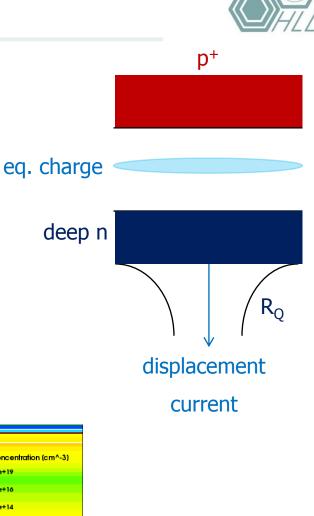
Sheet resistance

cutting edge biasing:

- extension of chip to sides \rightarrow deep n and additional n⁺ implant at the edge
- biasing of backside via this topside n⁺ contact
- \rightarrow vertical and lateral resistors important (possible voltage drop over chip length)
- R_{cut} similar to previous R_o and can be chosen freely by area of n⁺
- lateral resistor R_s = sheet resistance

 \rightarrow rough calculation: ≈ 6Ω simulation: ≈ 8Ω


 \rightarrow should not pose a problem for biasing


Dynamic Simulations

Basic idea:

- creation of charge according to the diode capacitance within the high field region
- now also with realistic creation time span \approx 100ps
- calculation of C_Q with the displacement current

Problem: Ansatz only valid for high resistivity material

Results:

Annealing	Thick	Pitch	Gap	V_b		V_bin	C_Q	C_D
Scenario	um	um	um	V		V	F	F
	4	11	50	10	0.1067	4.06E+00	1.68E-13	1.14E-13
	4	13	50	10	0.3841	3.90E+00	5.69E-14	1.16E-13
4	4 :	15	50	10	0.8138	4.14274	3.23E-14	1.20E-13
4	4	17	50	10	1.071	3.69943	2.36E-14	1.27E-13
4	4 2	20	50	10	1.4319	3.51078	1.68E-14	1.39E-13
4	4	9	50	10	0.0117	3.52655	7.89E-13	1.18E-13

<u>But</u>:

- current behavior dominated by high ohmic top side
- bulk resistor very low ohmic
- \rightarrow impedance of "C_Q" much larger (>>1k Ω) compared to "R_Q"
- \rightarrow "R_Q" dominates the bulk
- \rightarrow "C_Q" almost redundant

→ possible new model approach without C_Q and only featuring a series resistor for the bulk

Backside resistance:

- new backside profile \rightarrow reduced resistance values with marginal deviations
- should also pose no problem for cutting edge biasing (small sheet resistance ($\approx 7\Omega$))

 \rightarrow suggested thickness for devices:

 $15\mu m \rightarrow R_{bulk} = 360\Omega$

Dynamic simulations:

- for 15 μ m thickness: $C_Q \approx 32$ fF
- behavior in the bulk dominated by R_{bulk}
- C_Q almost redundant

→ possible new model approach without C_Q and only featuring a series resistor for the bulk R_{bulk}