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Versions of the Riemann fit

Distance measure - fits to points

ε = n0 + n1 · x + n2 · y + n3 · r2

(Frühwirth)

Distance measure - fits to drift circles of radius l

ε = n0 + n1 · x + n2 · y + n3 · r2 − a · l

This requires some prior knowledge of the right left passage hypotheses a as
seen by the particle.

CDC measurements are drift circles
This difference is not neglectable especially for rather short segments.
Only using the drift length and the correct right left passage hypotheses yields
accurate results.
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Segment fits to wire position - display
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Segment fits to wire position - detailed display

Figure 1: Segment fits have too high curvature, more information needed to straighten
trajectories.
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Segment fit to wire position - estimation quality
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Segment fits to drift circles - display

Oliver Frost | DESY | 29th September 2014 | Page 7/21

Two dimensional fitting Three dimensional fitting Planes



Segment fits to drift circles - detailed display

Figure 2: Using drift circles fits to axial segment yields right curvature. Fits to stereo
segments have differing curvature. Here the curvature sign is opposite (blue vs. red).
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Axial segment fit to drift circles - estimation
quality
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Difference between axial and stereo layers

Axial layers

> Projection carried out by the wires is the xy projection.
> Curvature in xy projection is the real curvature.
> Unbiased fit in projection

Stereo layers

> Projection carried out by the wires changes with z position.
> A particle trajectory can gradually pick up additional displacement as it is

moving forward/backward.
> Curvature in the projection and tanλ are interwined.
> This generally leads to a bias.
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Bias in curvature residuals - stereo superlayer 1
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Cause of the bias
Stereo effect influences curvature in the xy-projection
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Extending the Riemann fit to estimate covariance
matrices

Covariance estimation

V−1
ij =

∑
k

wk
dεk

dni

dεk

dnj

(Karimaki)

Application to Riemann fit

> Simple in normal parameters n, since they enter the distance ε linearly.
> Slightly complicating translation from four n parameters to three perigee

parameters.
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Covariance estimation quality
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Auxiliary implementation details.

> Fitting methods interfacing to other code easily do able.
> Transport / extrapolation of perigee covariances to new reference point.
> Helix class also doing closest approaches to points.
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Summary

> Parameter and covariance matrix estimation yield reasonable results for
axial layers.

> Fitting in stereo layers alone leads to a bias.
> On segment level fitting the wire position is not enough.
> Active use of drift length is not optional.
> The latter is requires the correct right left passage hypotheses.
> Comparision of the right left passage to the Monte Carlo truth would be

desireable.
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Changed logic in the second stage

Pairs instead of triples

> Use pairs of segments as cells for the cellular automaton instead of triples

Benefits

> Needs only one filter in the creation step instead of two.
> Tracks are allowed to end in stereo layers.
> Fewer left over segments
> Still enough information to construct a helix with from combination of axial

and stereo information
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Combining the axial and stereo fit

Kalmanesk combination of parameters

Combined helix covariance

V−1 = HT
a · V−1

a · Ha + HT
s · V−1

s · Hs

Combined helix parameters

x = V · (HT
a · V−1

a · pa + HT
s · V−1

s · ps)

Residuals
ra/s = pa/s − Ha/s · x

Combined chi square

χ2 = rT
a · V−1

a · ra + rT
s · V−1

s · rs

with perigee parameters pa/s, perigee covariances Va/s and segment ambiguity
matrix Ha/s of axial and stereo segment respectively.
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Ambiguity matrix

For axial segments

Ha =
dp
dx

=

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0



For stereo segments

Hs =
dp
dx

=

1 0 0 0 0
0 1 0 ζ 0
0 0 1 0 −ζ


where

ζ =
1

#hits

∑
hits

wire vectorxy · normal to trajectoyxy

wire vectorz
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Fit results
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Things that need to be done

Obvious

> Eventually use the fit output in proper rejection of cells and neighborhoods.
> Integrate the new track model (RecoTrack).

Not so obvious

> In superlayer segment merging
> Break the forward backward symmetry.
> Merge left over segments in superlayer 0 with VXD.
> Reconstuct cycles in the cellular automaton as curlers.
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