K_s (and e±) PXD rescue

formerly known as "6-layer online tracking"

Sören Lange, David Münchow, Milan Wagner Giessen FTF Workshop, Pisa, 30.09.2014

Bundesministerium für Bildung und Forschung

What is this about ?

- **ONLINE** tracking (Onsen, DATCON, HLT)
- PXD DAQ is actively deleting PXD raw data (if no ROI generated)

 → if deleted, PXD hits will never reach tape
 currently planned: CLUSTER RESCUE
 low p_T → high dE/dx → high cluster charge
 requires a threshold,
 today: seed pixel charge 1.8 x dE/dx|_{min}
- but not only low p_{T} leads to non-ROI
 - HLT
 - track finder requires 3 hits in 4 SVD layers
 - DATCON
 - requirement on the vertex

(x=0,y=0) is reference point in conformal transformation

PXD Data Acquisition and Reduction System

Diagram of the Belle II VXD DAQ for setup at KEK

Today: no algorithm yet, but ,, counting VXD layers" Example: single charged pions from primary vertex (box generator)

Counts per Layer (Pion)

Ks PXD Rescue | Sören Lange (Giessen) FTF Meeting, Pisa, 29.09.2014

Low pT "turn-on" effect is more significant for kaons

Counts per Layer (Kaon)

however, almost all of , lost" PXD clusters are recovered by CR (dE/dx is large enough) was also conclusion of VXD-only tracking SeeVogh meeting 14.07.2014

Energy Loss in PXD

pions kaons protons

"CLUSTER RESCUE" (Karlsruhe): factor 1.8 x minimum ionizing → today: require cluster seed charge of 45

Ks PXD Rescue | Sören Lange (Giessen) FTF Meeting, Pisa, 29.09.2014

Next step: secondary vertices

 K_s Rescue

what is the problem ?

 $K_s \rightarrow \pi + \pi -$

if 1 pion less than 3 hits in SVD and cluster charge too low then \rightarrow no PXD RAW hits for that pion

 \rightarrow worse vertex resolution for complete K_s

(still, SVD hits will be on tape)

 \rightarrow probable worse Δz for time-dependent CPV

on the next few slides:

inclusive B decays with basf2

10.000 events

cluster rescue at $1.8 \times dE/dx|_{min}$ in absolute numbers: 45 (for example events)

HLT Trackable Pions (SVD \geq 3 or reached CDC)

π[±] trackable by HLT/DATCON HLT/DATCON + Cluster Rescue HLT/DATCON + 6-Layer

HLT + Cluster Rescue (SVD ≥ 3 + Cluster > 250)

HLT + 6-Layer (SVD+PXD \geq 3)

Trackable Pions

Possible enhancement of trackable pions with 6-Layer-Tracking for p_{τ} of 100 - 300 MeV

Win of Trackable Pions Compared to HLT

Win of Trackable Pions 6-Layer Compared to Cluster Rescue

 π^+ : p_T =89 MeV π^- : p_T =292 MeV geometric issue: π^+ leaves acceptance after 1st SVD layer π^- gets stuck in 2nd SVD layer (only 3 hits) Cluster Rescue (seed charges): π^+ : 26 and 41 (both below threshold) π^- : 47 and 13 (inner layer rescued by CR)

 π^+ : $p_T=281$ MeV π^- : $p_T=66$ MeV geometric issue: π^+ reaches CDC => trackable by HLT π^- leaves acceptance after 2nd SVD layer Cluster Rescue (seed charges): π^+ : 22 and 14 (both below threshold) π^- : 34 and 55 (outer layer rescued by CR)

 π^+ : p_T =48 MeV π^- : p_T =771 MeV geometric issue: π^+ gets stuck in 2nd SVD layer π^- gets kink in 2nd SVD layer Cluster Rescue (seed charges): π^+ : 132, 140 and 251 (all rescued by CR) π^- : 20 and 21 (both below threshold)

Three groups of particles are recovered by 6-layer:

- 1. secondary vertex and K_s boost cause π^\pm tracks leaving the acceptance
- flat angle can cause small seed charge elongated cluster
 CR may fail (but cluster shape may also be input to CR)
- 3. pion is absorbed (nuclear interaction), or forms a "kink"

 \rightarrow there are <3 layers fired in SVD, but in all cases there are ≥3 layers fired in PXD+SVD \rightarrow rescue

e[±] Rescue

no cluster simulations yet problem: PXD clusterizer does not run, if box generator is used instead of EvtGen

Energy Loss in PXD

dE/dx

Cluster Rescue:factor 1.8 x minimum ionizing \rightarrow cluster seed charge of 45

Ks PXD Rescue | Sören Lange (Giessen) FTF Meeting, Pisa, 29.09.2014

e[±] Rescue

in B decays, e^{\pm} with low pT<100 MeV are not important

however, in some other NP channels e.g. dark photon search $e+e- \rightarrow e+e- e+e- e+e$ lower momentum cut it 50 MeV (information from I. Jaegle)

recovery by CR is not possible

possible approach in 6-layer tracking: displaced z-vertex for multi-curlers

Searches for dark photons and dark Higgs at Belle

Presented today for the first time, a new limit in the search for a dark photon and a dark Higgs with:

- A and h' prompt
- $m_{h'} > 2m_A$
- $0.1 < m_A < 3.5 \ {
 m GeV/c^2}$ and $0.2 < m_{h'} < 10.5 \ {
 m GeV/c^2}$

 α_D : dark sector constant ϵ^2 : kinetic mixing

- 10 exclusive channels: $3e^+3e^-$, $3\mu^+3\mu^-$, $2e^+2e^-\mu^+\mu^-$, $2\mu^+2\mu^-e^+e^-$, $3\pi^+3\pi^-$, $2\pi^+2\pi^-e^+e^-$, $2\pi^+2\pi^-\mu^+\mu^ 2e^+2e^-\pi^+\pi^-$, $2\mu^+2\mu^-\pi^+\pi^-$, $e^+e^-\mu^+\mu^-\pi^+\pi^-$
- 3 inclusive channels for $m_A > 1.1 \text{ GeV}/c^2:2e^+2e^-X$, $2\mu^+2\mu^-X$, $e^+e^-\mu^+\mu^-X$
- If $\alpha_D = 1$, Higgs-strahlung channel most sensitive to A

Background estimation with signal box blinded - part I

Data driven background estimation

- estimate background using "same sign" events $e^+e^- \rightarrow Ah' \rightarrow A(I^+I^+)A(I^+I^+)A(I^-I^-)$
- order masses of lepton pairs $m_{II}^1 > m_{II}^2 > m_{II}^3$ and plot $m_{II}^1 m_{II}^3$ vs. m_{II}^1
- select region in $m_{||}$ and predict background there using same sign

$$\blacktriangleright$$
 $e^+e^-
ightarrow 3e^+3e^-$

Hardware Implementation

most appropriate location is Onsen, as all PXD data are there, but:

(a) combinatorics is too high for all PXD hits and all SVD hits(b) resources on ONSEN FPGA are limited

 \rightarrow needs additional ONSEN-DATCON protocol send only SVD hits for a subset of tracks (e.g. displaced vertex)

 \rightarrow needs new algorithm first idea: use (x,y) of 1st PXD layer as reference hit for conformal map on DATCON

plan: apply for BMBF funding for algorithm study and prototype study (no investment \rightarrow we will not replace any hardware for now!)

There are more advantages to have a "backup method"

CR has limitations:

- (1) dynamic range limited by e.g. common mode noise6-bit range (?)
- (2) gain variation, chip by chip(corrected later offline, but cluster rescue is online)

Summary

6-layer may recover order(1.2%) of K_s in inclusive B decays (K_s not required on generator level) $\rightarrow \sim 480.000 \text{ K}_{s}$ per day (@ nominal luminosity) (which otherwise have no PXD raw data)

factor order(~2) more rescued tracks vs. CR p_T is higher than CR (p_T =100-300 MeV)

what would be new for DATCON/Onsen ? \rightarrow secondary vertex (xy for K_s, z for e±) in algorithm