#### From curved spacetimes to the Kondo effect

#### Mario Flory

Max-Planck-Institut für Physik



Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)



#### 21.11.2014 Particle Physics School Munich Colloquium

#### Overview

- Qualitative explanation of AdS/CFT
- Entanglement Entropy
- A holographic model of the Kondo effect
- Entanglement Entropy in the Kondo effect

Simply speaking:

The conjecture that certain conformal quantum field theories (CFTs) have a dual description in terms of gravity with anti de-Sitter (AdS) backgrounds.

Prospects:

- Hard computations in the QFT may be simple in the dual gravity picture.
- Set up a *holographic dictionary* relating QFT and gravity objects.

# What is AdS/CFT?

AdS metric:

$$ds^2 = \frac{1}{z^2} \left( -dt^2 + dx_i dx^i + dz^2 \right)$$



- Timelike asymptotic infinity (boundary) at z = 0 with induced Minkowsky metric.
- CFT is understood to live at boundary.

## The holographic dictionary

One entry to the holographic dictionary is the entanglement entropy. It is a measure of entanglement between two subystems A and B of the CFT.



 $S_{EE}(A) = -\operatorname{Tr}_{A}[\rho_{A}\log(\rho_{A})]$ with reduced density matrix  $\Leftrightarrow$  where  $\mathcal{E}_A$  is a spacelike  $\rho_A \equiv \text{Tr}_B[\rho_{A\cup B}]$ 



 $S_{EE}(A) = \operatorname{Area}(\mathcal{E}_A)/4G_N$ extremal surface

 $\rightarrow$  Generalisation of Bekenstein-Hawking entropy formula!

## The holographic Kondo model

- Field theory side:
  - ► Spin-spin interaction of electrons with a localised magnetic impurity.
  - ► Can be mapped to 1 + 1 dimensional conformal system [Affleck et. al. 1991].
  - Below a temperature T<sub>K</sub>, electrons form a bound state around impurity: Kondo cloud.
- Holographic gravity side: [Erdmenger et. al.: 1310.3271]
  - ▶ Dual gravity model has 2 + 1 (bulk-) dimensions.
  - Localised spin impurity is represented by co-dimension one brane extending from boundary into the bulk.
  - ► Finite T is implemented by black hole background with finite Hawking-temperature.



MARIO FLORY

## The holographic Kondo model

How can we obtain information about the Kondo cloud from our model?

• Kondo cloud is formed by anti-aligned spins



- $\Rightarrow$  expect imprint on entanglement entropy  $S_{EE}$ , e.g. entanglement of state  $|\Psi\rangle = \frac{1}{N} (|\uparrow \downarrow\downarrow ...\rangle |\downarrow \uparrow\uparrow ...\rangle)$  does not vanish.
- S<sub>EE</sub> is defined by spacelike geodesics ⇒ to calculate it, we need to take backreaction on geometry into account.
- What is the backreaction of an infinitely thin hypersurface carrying energy-momentum? *Israel junction conditions!*

## Kondo model: backreaction

 $S_{brane}[a^m, \Phi] = -\int dV_{brane}\left(rac{1}{4}f^{mn}f_{mn} + \gamma^{mn}(D_m\Phi)^{\dagger}D_n\Phi + V(\Phi^{\dagger}\Phi)
ight)$ 

- Brane starts at boundary and falls into black hole.
- As  $\Phi$  condenses, Kondo cloud forms at boundary.
- Qualitative bending of brane constrained by energy conditions.



[Erdmenger, M.F., Newrzella: 1410.7811]

## Kondo model: entanglement entropy

Preliminary results on entanglement entropy: Difference of  $S_{EE}(\ell)$  relative to solutions with  $\Phi = 0$ .



[Erdmenger, M.F., Hoyos, Newrzella, O'Bannon, Wu: work in progress]

MARIO FLORY

Curved spaces to Kondo effect

10 / 12

# Summary and Outlook

Holography allows us to investigate problems in quantum field theory by studying a dual gravitational system.

Example: The holographic Kondo model

- Gravity dual involves thin brane carrying energy-momentum.
- We obtained general results constraining possible geometries of the brane by energy conditions [1410.7811].
- Specific Kondo model will be solved numerically.

Thank you for your attention

## Our goal: Study Israel junction conditions

In electromagnetism: To describe field around an infinitely thin charged surface  $\Sigma$ , integrate Maxwells equations in a box around  $\Sigma$ :

$$\Rightarrow \vec{E}_{||}$$
 continuous,  $~\vec{E}_{\perp}$  discontinuous on  $\Sigma$ 

**In gravity:** To describe backreaction of an infinitely thin surface, integrate Einsteins equations in a box  $\Rightarrow$  Israel junction conditions:

$$(K_{ij}^+ - \gamma_{ij}K^+) - (K_{ij}^- - \gamma_{ij}K^-) = -\kappa S_{ij}$$

 $S_{ij}$ : energy momentum tensor on the brane,  $\gamma_{ij}$ : induced metric,  $K^{\pm}$ : extrinsic curvatures depending on embedding.

## Our goal: Study Israel junction conditions

**In gravity:** To describe backreaction of an infinitely thin surface, integrate Einsteins equations in a box  $\Rightarrow$  Israel junction conditions:

$$(K_{ij}^+ - \gamma_{ij}K^+) - (K_{ij}^- - \gamma_{ij}K^-) = -\kappa S_{ij} \qquad (*)$$

 $S_{ij}$ : energy momentum tensor on the brane,  $\gamma_{ij}$ : induced metric,  $K^{\pm}$ : extrinsic curvatures depending on embedding.

 $\Rightarrow$  Embedding (location of the brane) will not be  $x \equiv 0$  anymore, it becomes a dynamical function x(z) with (\*) its own equations of motion.

[Israel, 1966]