Black Holes as Quantum Bound States

Tehseen Rug

Max-Planck-Institut für Physik, Ludwig-Maximilians Universität

December, 12th 2014

Contents

- I Black Holes The usual picture
- Quantum Portrait of Black Holes
- 3 Quantum Bound State Description of Black Holes
- 4 Summary and Outlook

Classical Black Holes

General Relativity:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G_N T_{\mu\nu}$$
 (1)

- Schwarzschild black holes: spherically symmetric solutions with source radius $R = r_g = 2G_N M$
- event horizon: "nothing can escape from a black hole"

Semiclassical Black Holes

Basic Idea: Quantize matter field in classical background

- Consequence: Hawking radiation $T \sim 1/r_g$, $\Gamma \sim 1/r_g$
- Remark:

Quantum Corrections believed to be exponentially suppressed

- Mysteries:
 - negative heat capacity
 - no hair theorems
 - information paradox

No resolution within semiclassical approach

Graviton Bound States (Dvali, Gomez; 1112.3359)

- interpret GR as EFT of graviton on flat spacetime, $g_{\mu
 u} = \eta_{\mu
 u} + h_{\mu
 u}$
- Black holes: Bound states of N soft gravitons (λ ~ r_g) (analogy: Hadrons in Quantum Chromodynamics (QCD))

Scaling Relations

$$M = \sqrt{N}M_{\rho}, \ r_g = \sqrt{N}L_{\rho}, \ \alpha = 1/N$$
 (2)

- e.g. for solar mass black hole: $N \sim 10^{71}$
- coupling weak, but large collective effect $\alpha N = 1$

イロト 不得下 イヨト イヨト

Implications

known results recovered as N→∞
 e.g. Hawking radiation:

$$\Gamma \sim 1/r_g + \mathcal{O}(1/N) \tag{3}$$

- new 1/N corrections large enough to resolve all the black hole mysteries!
- Question: Quantitative theoretical framework?

Basic Idea (Hofmann, Rug; 1403.3224)

- \bullet construct observables connected to black hole state $|\mathscr{B}\rangle$
- $\bullet\,$ represent $|\mathscr{B}\rangle$ in terms of graviton fields

$$\langle \mathscr{B}|J(x)|\Omega\rangle \neq 0, \ J(x) = \Phi^N(x)$$
 (4)

- construct observables $\langle \mathscr{B} | \mathscr{O} | \mathscr{B} \rangle$
- use Wick's theorem to evaluate these observables

Remark: Non-perturbative effects due to non-vanishing normal-ordered products of fields \Rightarrow condensates

Observables at Parton Level

• light-cone constituent distribution:

$$\mathscr{D}(\mathbf{r}) = \int \mathrm{d}^{3}k \, \mathrm{e}^{-\mathrm{i}k \cdot \mathbf{r}} \langle \mathscr{B} | \mathbf{n}(\mathbf{k}) | \mathscr{B} \rangle \tag{5}$$

• energy density:

$$\mathscr{E}_{\mu\nu}(x) = \langle \mathscr{B} | T_{\mu\nu}(x) | \mathscr{B} \rangle \tag{6}$$

イロン イヨン イヨン イヨン

臣

Remarks

• evaluation using in $N, M \rightarrow \infty$, N/M fixed limit leads to

$$M^{2} = \frac{\langle \Phi^{2(N-1)} \rangle}{\langle \Phi^{2(N-2)} \rangle} N^{2}$$
(7)

- scaling: $M \sim N$ expected at parton level
- finite $N \Rightarrow 1/N$ corrections
- observables dominated by non-perturbative condensates
- higher-order corrections can be accounted for perturbatively
- construction possible for arbitrary spacetimes

(日) (同) (三) (三)

Scattering (Gruending, Mueller, Hofmann, Rug; 1407.1051)

• $\langle \mathscr{B}' \Phi' | \mathscr{B} \Phi \rangle$ in tree approximation

• $r_g^{-2} \ll q^2 \ll M_p^2$: EFT description valid, but resolution of bound state possible

$$k^{\prime 0} \frac{\mathrm{d}\sigma}{\mathrm{d}^{3}k^{\prime}} \sim \mathscr{D}(r) \tag{8}$$

・ロト ・聞ト ・ヨト ・ヨト

Black Hole Formation (Gruending, Mueller, Hofmann, Rug; to appear)

Transplanckian scattering $(E = \sqrt{s})$ with impact parameter smaller than corresponding Schwarzschild radius \Rightarrow Possibility of black hole formation

(D) (A) (A) (A)

Black Hole Formation (Gruending, Mueller, Hofmann, Rug; to appear)

Transplanckian scattering $(E = \sqrt{s})$ with impact parameter smaller than corresponding Schwarzschild radius \Rightarrow Possibility of black hole formation

Amplitude: $\langle \mathscr{B} | a^{\dagger}(k_1) a^{\dagger}(k_2) \rangle \sim f(N) e^{-N}$ Factorization of perturbative and non-perturbative contributions!

Summary

Summary:

- treat black holes as large N bound state of gravitons
- 1/N corrections as solution to black hole mysteries
- employ QCD inspired methods
- scaling $M \sim N$, embedding of observables in scattering experiments
- black hole production: $\mathscr{A} \sim e^{-N}$
- construction applicable to generic spacetimes

Outlook

Outlook:

- computation of 1/N corrections
- RG evolution
- black hole merger
- de Sitter spacetime and inflation
- AdS/CFT correspondence

(D) (A) (A)

Thank You for Your Attention

・ロト ・四ト ・ヨト ・ヨト