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1. Why measure “boring” SM cross-section?
2. Boosted objects and jet - substructure
3. Multivariate Methods
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Motivation

WW - production sensitive to anomalous triple gauge boson couplings (aTGCs)
¢ W g W 9 1% J J_,JJ
I MC HC
14
q 1% q W g W g \

* Important test for SM

W

W

* Deviations from SM become more enhanced with increasing CM energy

* Mild excess in 0 found by ATLAS and CMS

« Dominant background for H>W W’

« With higher CM energy, boosted topologies become much more important
« Lately a large number of jet substructure methods on the market

« Can be nicely used to discriminate S/B
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Motivation

« Semileptonic channel has a high branching ratio
BR (WW 9 I Y% I V) ~ 5%, (l: e P M ) WWbran;hingﬁfractions
BR (WW = jjlv)~29%, (I=e,u)

Fully leptonic
1111

— Gain factor 6 in statistics

 Full hadronic channel would allow ' |
full control over WW system |

* Already attempted — Impossible!

Fully hadronic

* Need hard lepton to trigger the event
and suppress QCD - multijet events

y Semileptonic (tau)

« Downside:

Detector resolution too low to distinguish jets from W and Z
> Have to measure combined WW+W/Z cross - section

> In turn gives better sensitivity to aTGCs (arXiv:1410.7238v1)
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ATLAS @ LHC

2012 Data: s=8 TeV, [ /' dt=21fb"
* |n the Muonstream alone, there are 725M recorded events, 46k of which are WW

» After event selection: Only 500 - 1000 signal events left
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2. Boosted topoloai nd jet - tructur



Why jet substructure?

* High center of mass energy at the LHC:

> Large amount of heavy particles is produced boosted and
decaying in a collimated (single jet like) final state

> Decay products are clustered into one jet with size e

T

> Final state not resolvable with standard (narrow jet) techniques anymore

— Go to “fat jets”
Low top pt High top pt

> Fat jet mass is an important variable to identify decayed particles
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Why jet substructure

 High luminosity:
> Additional pp - collissions per bunch crossing (pile-up) deteriorate jet mass and shape

> Need technique to separate internal energy flow structures from diffuse pile-up
contributions for mass reconstruction
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 Jet substructure:

> Different techniques/variables to distinguish gluon - jets from from heavy particle - jets
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Jet grooming

Mass drop tagging plus filtering:
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Jet grooming

Mass drop tagging plus filtering:
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Example: N - subjettiness

N - subjettiness: N can go from 1 to infinity

*  What it means:
> Ty means to what degree a particular jet can be regarded as a jet composed of N subjets
> 1, ~0:Allradiation aligned with candidate subjets — N or fewer subjets

> 1,>0: Significant energy distributed away from subjet directions
— At least N+1 subjets

A

A

P

Typical W - jet Typical gluon - jet
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Entries

Example: N - subjettiness

e How is it calculated?  (arxiv:1011.2268)
 We look at one fat - jet

- Then we identify N candidate subjets (force £, - algorithm to return exactly N jets)
TN:a-Z pT,kmin(ARl,k,ARz,k,...,ARN,k)

* kruns over the jet constituents andA R, , is the distance between
the subjet J and the constituent k
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* Best discrimination by using the ratio _Té“l
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Event selection

 Won't go into details, only important cuts are mentioned
1. Require exactly one hard, well reconstructed lepton (electron or muon)
2. Missing transverse energy from the neutrino of > 30 GeV
3. At least one Cambridge-Aachen ( R = 1.2 ) jet with:
« Mass > 60 GeV (W - mass)
« Pr>150 GeV

4. Jet has to pass mass drop tagging and undergo filtering, filtered jet
has to fall into W - mass window (60 GeV < m ;< 100 GeV)

« Still low S/B fraction S/(S+B) ~ 3%:

> Make use of substructure variables and combine them in a multivariate analysis
1. Boosted Decision Tree
2. Neural Network

3. Likelihood Function

ApByz it

13



3.Multivariate Methods
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Multivariate Methods

* |dea of MV methods is to combine separating power of several variables into one
« Plain cuts would reject too many events

* MV methods take into account correlations between variables

« Have to be trained with Monte Carlo events

* Generally a very robust way to classify signal and background events as such
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Multivariate Methods

* |dea of MV methods is to combine separating power of several variables into one
« Plain cuts would reject too many events

* MV methods take into account correlations between variables

« Have to be trained with Monte Carlo events

* Generally a very robust way to classify signal and background events as such
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Multivariate Methods

* |dea of MV methods is to combine separating power of several variables into one
« Plain cuts would reject too many events

* MV methods take into account correlations between variables

* Have to be trained with Monte Carlo events

* Generally a very robust way to classify signal and background events as such
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Conclusion

1. Boosted topologies are a wide an interesting field which becomes
iIncreasingly important

2. Not the easiest channel, boost - requirement already throws away
around ~96% of all signal events

3. Substructure is very powerful to disentangle S from B

4. Multivariate tools provide a good way to combine variables
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Example: N-subjettiness

One typical variable: N-subjettiness (arXiv:1011.2268)
We look at one W-jet (jet has W mass )

Then we identify N candidate subjets (hardest p, reclustered jets)

1 .
TN:d—Z pramin(AR AR, ,...,ARy ;)
0 k

k runs over the jet constituents and A R
and the constituent k

, « Is the distance between the subjet J

d,=2. Ry is the original jet's radius.

A
A
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Pile-up

« Two types of pileup

1. In time pileup

2. Out of time pileup

e In time pileup:

> Activity in the event from pp collisions in the same bunch crossing

> Can be characterized by N ., (number of primary vertizes)

e Out of time pileup:

> Remaining signal in calorimeters from previous bunch crossings, due to long
integration times — leads to negative cells/clusters

A;:-Ay?ff
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N-subjettiness

65 GeV < mi < 95 GeV
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Boosted decision tree

* Train tree with S/B events
* In each node, split tree according to best separation

« Until only leaves with purity above a certain threshold are left
* Increase the weight of events that fell on a wrong leaf
 Make a new tree

* lterate this procedure N times

« As signal classified event gets output

. B
value of 1, other wise O 4/37
* Sum over all trees and compute : > (.2 GeV
average output value
S
* This is the final output variable 39/1

Radius?

7/1 2/9
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Separating signal and background

* Idea 1s to combine separating power of many little separating variables
e Solution: Multivariate method — Artificial Neural Network (ANN)
* Very powerful at recognizing patterns — Classification

* Has to be trained with many signal and background events (~50k each)

How does it work?

WW - Cross section
Ap-Ay}ff‘
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Separating signal and background

nsubjets :
planarflow :
C2var:
tau21 :
split12 :
angularity :
mu :

y:

zcutli2 :

dipolarity :

mPtRatio :

Bias node :

WW - Cross section

Quiput layer




Separating signal and background

How does it work?
* Not programmed, but trained
* Supervised learning
* Feed the NN with all signal and bkg. events, where each is flagged as such
» After that (1 epoch) adjust weights of every synapse and node
* In signal case, answer at output layer shall be 1, other wise 0
e Train with some thousand epochs

e Apply trained network on data

WW - Cross section 26
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ing signal and background
tead of MC as background

Separat

1nS

data

For training, use

bl
B

27

2107

2

Backaround

5%
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*
Teee

tified

jus

Neural net output

WW - Cross section

bkg only very well

* Assumption data 1s
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Separating signal and background

Absolute amount of signal events still very small
Cutting on the NN output would further reduce signal rate
Better possibility:

Run NN on data and then perform a fit of sig. and bg. output
distributions to determine fraction of signal in data

Access to the cross section
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Neural Net
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