Segmented Broad Energy Germanium Detector

Outline:

- Physics Goals
- BEGe detector
- First measurements on segmented BEGe detector
- Summary & outlook

Heng-Ye Liao

for the GEDET collaboration Max-Planck-Institut für Physik IMPRS @ Föhringer Ring 6, Munich, 13/02/2015

Motivation & Mission Statement

GEDET collaboration:

Germanium detector R&D for future application in fundamental physics

- ✓ Neutrinoless double beta decay
- ✓ Dark matter searches

Tasks:

- Reduce background
- Establish techniques to distinguish signal events from background events

→ Use <u>intelligent detectors</u>

Key issue:

Good understanding of the detector response for signal and background events

High Purity Germanium Detector

- ✓ Excellent energy resolution
- ✓ Intrinsically clean

- Disadvantages for traditional HPGe detector:
 - □ Big capacitance ⇒ Noisy
 - Limited pulse shape discrimination

Broad Energy Germanium Detector

- Broad Energy Germanium Detector
- Widely used for many experiments: GERDA/MAJORANA, CoGeNT, ...
- Advantages for BEGe detector:
- ✓ smaller p⁺ contact ⇒ less noise
- ✓ Strong located E-field
 - ➡ Powerful PSD

Broad Energy Germanium Detector

- **Broad Energy Germanium Detector**
- Widely used for many experiments: GERDA/MAJORANA, CoGeNT, ...
- Advantages for BEGe detector:
 smaller p⁺ contact ⇒ less noise
- Strong located E-field
 - Powerful PSD

Broad Energy Germanium Detector

- Broad Energy Germanium Detector
- Widely used for many experiments: GERDA/MAJORANA, CoGeNT, ...
- Advantages for BEGe detector:
- ✓ smaller p⁺ contact ⇒ less noise
- ✓ Strong located E-field
 - Powerful PSD
- Disadvantages for BEGes:

<u>1D</u> degeneracy in ϕ

extra segmentations to extract event topology information

Segmented Broad Energy Germanium Detector

- Designed by the GEDET group, made by Canberra France
- N-Type BEGe detector
- Point contact with 4-fold segmentation
- **3D event reconstruction:**
- Segmentation design:
 - Minimizing amount of contacts
 - Maximizing retrieval of information
- Configurations:
 Dimension: φ 75mm x 40mm
 Mass: 940 g
 HV: +4500 Volt (on N⁺ contact)

Test Facility

- K1 test stand:
- Conventional vacuum cryostat
- Single detector: cooling finger submerged in LN2
- 2 Copper ears to house electronics
 stand alone preamp for core
 single preamp/segment
- Built by Canberra France and modified at MPI
- Flexible device capable to scan through different (r, φ, z)

Characterization using ¹³³Barium source

Hit Positions at X-Z plane from simulation

Pulse Shape Simulation

- Why pulse shape simulation? Improve the understanding of Germanium detector, like:
 - impurity distribution
 - charge trapping
 - charge collection efficiency
 - Sensitivity of event topology
- Simulation tools:
- ✓ Geant4: physics process \implies hit info
- ✓ MaGe: Pulse shape simulation
 Field calculation

e/h drift in the bulk induced charge on the electrode (waveform)

Summary & Outlook

Summary:

- BEGe detector with extra segmentations useful to disentangle different event topologies
- The segmented BEGe detector is designed by GEDET group and built by Canberra France
- Commissioning since July, 2014
- Characterization using ¹³³Ba source

Outlook:

- Validate Monte Carlo
- Provide tools for detector design
- Write characterization paper