Motivation	Upgrade	Topology	HLG-112-S-J	ILD2300-20	Summary and Outlook

Performance of Laser Distance Sensors

Ralph Müller

February, 13th 2015

IMPRS PPSMC LS Schaile Ludwig-Maximilians-Universität-München

Ralph Müller

Performance of Laser Distance Sensors

Motivation	Upgrade	Topology	HLG-112-S-J	ILD2300-20	Summary and Outlook
000	000000000	0000	00	000	
Table of	Contents				

1 Motivation for ATLAS NSW Upgrade

2 Micromegas and sTGC Detectors for the NSW Upgrade

3 Principle of Topology Measurements

Performance of the Panasonic HLG-112-S-J

5 Performance of the microEpsilon ILD2300-20

6 Summary and Outlook

Motivation	Upgrade	Topology	HLG-112-S-J	ILD2300-20	Summary and Outlook
●00	000000000	0000	00	000	
Atlas De	etector				

2018: New Small Wheel

Motivation	Upgrade	Topology	HLG-112-S-J	ILD2300-20	Summary and Outlook
○●○	000000000	0000	00	000	
Trigger					

- all L1_MU11 Triggers (10 GeV muons)
- reconstructed tracks with $P_T > 3 \ GeV$
- reconstructed tracks with $P_T > 10 \ GeV$

homogeneous distribution 90% false triggers in endcap region $(|\eta|>1)$

- Extrapolated rate of L1_MU20: 60 kHz for design luminosity \$\mathcal{L}\$ = 10³⁴
- Close to bandwidth limit: 100 kHz

550

- A Track pointing to IP Correct muon track
- B No hit in Small Wheel e.g. proton faking muon
- C Track not pointing to Interaction Point
 - e.g. background event

Small Wheel

Aθ

end-cap

toroid

_	- ··· · -				
Motivation	Upgrade	Topology	HLG-112-S-J	ILD2300-20	Summary and Outlook
00●	00000000	0000	00	000	

Reasons for High Trigger Rate

Idea

False triggers can be sorted out by including the Small Wheel in the Level 1 trigger. \Rightarrow Upgrade of the Small Wheel, $\Delta \theta \leq 1 \ mrad$

Motivation	Upgrade	Topology	HLG-112-S-J	ILD2300-20	Summary and Outlook
000	●00000000	0000	00	000	
New Sm	nall Wheel	Assemb	lv		

- disklike structure:
 - eight large sectors
 - eight small sectors
- Each sector subdivided into two detector units
- Detector unit: two quadruplets of MM and sTGC each
- trigger: eight layers of sTGC
- precision: eight layers of Micromegas
- SM2 to be built at LMU

Motivation	Upgrade	Topology	HLG-112-S-J	ILD2300-20	Summary and Outlook
000	0●0000000	0000	00	000	
Working	Principle	of Micror	negas Dete	ectors	

- electronic single strip readout
- measure charge center $\sigma <$ 50 μm
- need of a precise readout plane
 - pitch
 - planarity
 - drift gap
 - amplification gap

Achieved Resolution

 $(50 \times 50 \ cm^2 \ MM,$ 120 GeV Pions, H6-Beamline CERN, perpendicular beam)

MM Construction as quadruplets

- 1 quadruplet = 5 sandwhich panels
- Panel size $\approx 2 m^2$ (SM2)
- Planarity requirement 80 μm over 2 m^2
- About 160 surfaces to measure
- Measurment duration / panel: Tactile: $\approx 8 h$ laser: $\approx 1 h$

- Red and Blue: sTGC's: small strip Thin Gap Chambers for trigger
- Orange and green: Micromegas: micromesh gaseous structure for precision coordinate
- Structure of a single sector: one module sTGC one module Micromegas one module Micromegas one module sTGC

 Motivation
 Upgrade
 Topology
 HLG-112-S-J
 ILD2300-20
 Summary and Outlook

 000
 0000
 000
 00
 00
 00
 00

Sectors of the New Small Wheel

SM2:

- three readout boards per readout plane
- 1024 strips each
- 0.45mm pitch
- alignment requirement: 20 $\mu m/2 m = 10^{-5}$

Motivation	Upgrade	Topology	HLG-112-S-J	ILD2300-20	Summary and Outlook
000	000000●00	0000	00	000	
Glueing	Process				

- Two step glueing process
- Need precision needed during glueing
- Need to monitor the glueing process using the stiffback

Motivation	Upgrade	Topology	HLG-112-S-J	ILD2300-20	Summary and Outlook
000	0000000●0	0000	00	000	

Glueing Process of a Prototype

Glueing the first side

Glueing the second side

 Motivation
 Upgrade
 Topology
 HLG-112-S-J
 ILD2300-20
 Summary and Outlook

 000
 0000
 000
 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00</t

Assembly of Four Mechanicle Prototypes in Freiburg

Mechanicle Prototype in Freiburg

Performance of Laser Distance Sensors

Dlanarit		nont Ero	ihuwa Tak	stila	
000	000000000	0000	00	000	00
Motivation	Upgrade	Topology	HLG-112-S-J	ILD2300-20	Summary and Outlook

Planarity Measurment Freiburg - Tactile

CNC - Measurment Freiburg

- CNC coordinate measurment system
- Topology Measurement of all five panels

Sensor of CNC Machine

Result of Planarity Measurment in Freiburg

- Grid visible
- 15 µm structure included intentially for diagnostics
 ⇒ Planarity OK
- Edge effects outside active area

February, 13th 2015 16 / 25

- Known constants: a, a', δ
- According to the scheme one gets

$$\alpha = 90^{\circ} - \delta - \beta \equiv \delta' - \beta \quad (1)$$

$$\tan\beta = \frac{x}{a} \tag{2}$$

$$\frac{\sin\alpha}{a'} = \frac{\sin\beta}{z}$$
(3)

• Using (1), (2) and (3) one obtains

$$z = x \cdot \frac{a'}{a} \cdot \frac{1}{\sin \delta' - \frac{x}{a} \cos \delta'} \quad (4)$$

Motivation	Upgrade	Topology	HLG-112-S-J	ILD2300-20	Summary and Outlook
000	000000000	000●	00	000	
Available	Sensors				

Results obtained with both sensors mounted on a vertical translator will be displayed in the following slides

 Motivation
 Upgrade
 Topology
 HLG-112-S-J
 ILD2300-20
 Summary and Outlook

 Comparison between Laser
 Sensor and Reference

 Measurement

- $50 \times 54 cm^2$ panel
- Differences caused by permanent deformation
- Time between measurments
 ≈ 0.5 a
- Laser based topology measurement seems aplicable

- Granite table as reference surface
- Four line measurements along identical line:
 - Granite table: contains semitransparent crystals
 - Kapton foil: 20 μm semitrsparent
 - Aluminum: rough surface
 - Teflon: smooth non transparent surface

⇒ Panasonic sensor not suitable for semitransparent surfaces

Motivation	Upgrade	Topology	HLG-112-S-J	ILD2300-20	Summary and Outlook
000	000000000	0000	00	●○○	
microEps	silon Sensc	or			

- Spot size 40 imes 40 μ m²
- specular reflection measurment mode (for semiransparent surfaces)
- 40 mm working distance $\pm 10 \text{ mm}$

<u> </u>					
000	000000000	0000	00	000	
Motivation	Ungrade	Topology	HLC 112 S L	II D2300-20	Summary and Outlook

Topology of Calibration Profiles

Machined Aluminum Profile

 Possibility to measure very small deviations.

- Visible bending of aluminum profile
- \bullet Deviation from parabolic fit \Rightarrow additional non planarity
 - granite surface
 - imperfection in alu profile
- Overall planarity: $\sigma =$ 4.6 μm

Motivation	Upgrade	Topology	HLG-112-S-J	ILD2300-20	Summary and Outlook
000	000000000	0000	00	000	●0
Summar	y				

- Upgrade project of the ATLAS muon spectrometer
- Construction of SM2 modules at LMU
- Quality controll of the MM panel surface mandatory
- Non tactile, laser based measurements
- Panasonic Sensor HLG-112-S-J:
 - **0** 8 μm Resolution
 - Able to measure nontransparent surfaces
- microEpsilon ILD2300-20:
 - **0**.3 μm Resolution
 - Able to measure semitransparent surfaces such as PCB or granite table
 - Smaller beamspot \Rightarrow strips can be resolved
 - () total resolution of measurment system < 10 μm

Motivation	Upgrade	Topology	HLG-112-S-J	ILD2300-20	Summary and Outlook
					0•

Thank you

Planarity Measurment of Stiff-Back in Freiburg

- Stiff-back shows a sag of more than 160 μm under its own weight
- Explanation of deformation of panels
- A more rigit stiff-back is needed for NSW production

Micromegas Strip Pattern

Topology of Strippattern

Topology of Strippattern

Topology of PCB with Cu Strips

- Strip pattern with 203 strips and 450 μm pitch
- Measuring the strip pitch by
 - Distance between min / max $\mu = 450.8 \ \mu m; \ \sigma = 74.5 \ \mu m$
 - **②** Distance between falling edges $\mu = 451.1 \ \mu m; \ \sigma = 52.5 \ \mu m$

Ralph Müller

Performance of Laser Distance Sensors

February, 13th 2015 25 / 25