Moduli Stabilisation and Axion Inflation with Non-geometric Fluxes

Daniela Herschmann

March 20, 2015

arXiv:1409.7075 [Ralph Blumenhagen, DH, Erik Plauschinn] arXiv:1503.x∞∞x [Ralph Blumenhagen, Anamaría Font, Michael Fuchs, DH, Erik Plauschinn, Yuta Sekiguchi, Florian Wolf]

string theory:

a lots of scalar fields

- → almost none of these observed
- → can solve open questions
 - e.g. QCD axion, dark matter, inflation, ...

Why are there so many scalar fields?

- type II B (A) string theory contains p-forms C_p with p even (odd)
- dilaton $\phi \to \text{string coupling } e^{-\phi}$
- deformations of extra dimensions parametrised by *moduli* $\text{K\"{a}hler moduli} \rightarrow \text{volume of internal space}$ $\text{complex structure moduli} \rightarrow \text{shape of internal space}$
- ullet open string moduli, ... ightarrow not considered here

How do we explain their absence in observations

- → too heavy to be observed
- → we need a mechanism to make them heavy
- ightarrow moduli stabilisation e.g. via coupling to fluxes in type IIB:

fluxes
$$F_3 = dC_2$$
 and $H_3 = dB_2$

Use one of those moduli fields as inflaton

- → effective potential for inflaton
- → inflaton is axionic

moduli stabilisation scheme behind axion monodromy inflation

axion monodromy inflaton

large field inflation $\Delta \phi > M_p$

- ullet shift symmetry o axion
- ullet symmetry broken in controlled way o monodromy string theory contains some axions
- C_p Ramond Ramond fields
- axionic part of complex structure moduli in the large complex structure limit

type IIB: fluxes stabilise complex structure moduli and axio-dilaton

$$W = \int \Omega \wedge (S H_3 + F_3)$$

with

 Ω depends on complex structure moduli

$$S$$
 axio-dilaton $S = e^{-\phi} + i C_0$

• Kähler moduli $T = \tau + i C_4$ stabilised by corrections e.g. non-perturbative corrections to superpotential $W \sim e^{-aT}$

scalar potential

$$V_F = rac{M_{
m Pl}^4}{4\pi} \, \, e^K \Big(K^{I\overline{J}} D_I W D_{\overline{J}} \overline{W} - 3 \big| W \big|^2 \Big)$$
 with

Kähler potential

$$\mathcal{K} = -\log\left(-i\int_{\mathcal{M}}\Omega\wedge\overline{\Omega}
ight) - \log\left(S+\overline{S}
ight) - 2\log\mathcal{V}$$

- stabilise all saxions, while unstabilised axions are allowed
- we are interested in non-susy minima

Procedure

- stabilise complex structure moduli and the axio-dilaton except the axionic inflaton
- turn on small fluxes to stabilise the inflaton tune moduli masses bigger than axion mass

$$W = \lambda W_{mod} + W_{ax}$$

with $\lambda >> 1$

axion mass not tunable to be small!

3. stabilise Kähler moduli s.t. $M_T > M_{ax}$

Kähler moduli stabilisation via g_{s^-} , α' - and non-perturbative corrections

$$\Rightarrow M_T < M_{rest}$$

tree level Kähler moduli stabilisation

$$W = - \left(\begin{array}{ccc} \mathfrak{f}_{\lambda} & X^{\lambda} - & \tilde{\mathfrak{f}}^{\lambda} & F_{\lambda} \right) & \mathfrak{f} & \mathsf{RR-flux} \\ \\ + i \, S & \left(\begin{array}{ccc} h_{\lambda} & X^{\lambda} - & \tilde{h}^{\lambda} & F_{\lambda} \end{array} \right) & h & \mathsf{H-flux} \\ \\ - i \, G^{a} \left(\begin{array}{ccc} f_{\lambda a} & X^{\lambda} - & \tilde{f}^{\lambda}{}_{a} & F_{\lambda} \end{array} \right) & f & \mathsf{geometric} & \mathsf{flux} \\ \\ + i \, T_{\alpha} \left(\begin{array}{ccc} q_{\lambda}{}^{\alpha} & X^{\lambda} - & \tilde{q}^{\lambda \alpha} & F_{\lambda} \end{array} \right) & q & \mathsf{non-geometric} & \mathcal{Q}\text{-flux} \end{array}$$

[Shelton, Taylor, Wecht], [Grana, Louis, Waldram]

non-geometric fluxes stabilise h_{+}^{11} moduli geometric fluxes stabilise h_{-}^{11} moduli

results

- set of vacua with parametrical control over the vacuum expectation values
- many massless axions which can be stabilised via

$$W = \lambda W_{mod} + W_{ax}$$

framework to realise F-term axion monodromy inflation

high scale supersymmetry

problems

- tachyons if we consider more moduli
- vacua AdS and uplift mechanism to dS not clear
- uplift to string theory not clear
- hierarchy of masses $M_{
 m Pl}>M_{
 m s}>M_{
 m KK}>M_{
 m mod}>H_{
 m inf}>M_{\Theta}$ hard to achieve