Gauge Theory and the Geometry of Elliptic Curves

Andreas Kapfer

Particle Physics School Munich Colloquium: April 2015

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Outline

mathematical theory of elliptic curves

connection via F-theory

gauge theories

- Isimple Introduction to Elliptic Fibrations and F-theory
- ② Recap of Anomalies in Quantum Field Theory
- ③ Anomaly Cancelation in F-theory ⇔ Symmetries of Elliptic Fibrations

Fibrations

Fibration (roughly):

- base space
- fiber space
- total space (fibration)

Fibration

"To each point in a base space a fixed fiber space is attached!"

Fibrations

Fibration (roughly):

- base space
- fiber space
- total space (fibration)

Fibration

"To each point in a base space a fixed fiber space is attached!"

• total space looks locally like "base x fiber"

Example Trivial Fibration: Line x Line

Building blocks:

Fibration:

Example Trivial Fibration: Line x Line

Building blocks:

 \rightarrow trivial fibration because simple product space: line x line

Non-Trivial Fibration: Möbius Strip

Building blocks:

Fibration:

Non-Trivial Fibration: Möbius Strip

Building blocks:

 \rightarrow non-trivial fibration because the fiber gets **twisted** when going around the circle

 \rightarrow still locally trivial: line x line

Andreas Kapfer

Gauge Theory and Elliptic Curves

Elliptic Fibration

Building blocks:

Fibration:

- elliptic curve: torus with special points (K-rational points)
 - \rightarrow later more
- shape of the torus varies over the base

Section:

- smooth map: base \rightarrow total space
- point in the base \mapsto point in the fiber over it

Sections

Section:

- smooth map: base \rightarrow total space
- point in the base \mapsto point in the fiber over it

Example: line x line

Sections

Section:

- smooth map: base \rightarrow total space
- point in the base \mapsto point in the fiber over it

Example: line x line

 \rightarrow smooth embedding of the base space into the total space

Example: a simple section of the Möbius strip

Sections of elliptic fibrations:

- elliptic curve: torus with special points (K-rational points)
- elliptic fibration: fiber elliptic curve over some base space
- a section marks a single point in each fiber
 ⇒ the K-rational points of elliptic curves define (rational) sections of the elliptic fibration

Sections of elliptic fibrations:

- elliptic curve: torus with special points (K-rational points)
- elliptic fibration: fiber elliptic curve over some base space
- a section marks a single point in each fiber
 ⇒ the K-rational points of elliptic curves define (rational) sections of the elliptic fibration

F-theory

rational sections $\Leftrightarrow U(1)$ gauge symmetries

Rational points on elliptic curves

Describe spaces by polynomial equations:

Sphere (in
$$\mathbb{R}^3$$
)
 $x^2 + y^2 + z^2 = 1$

Elliptic Curve/Torus (in $\mathbb{P}^2_{2,3,1}$) $y^2 = x^3 + fxz^4 + gz^6$, with $f, g \in \mathbb{C}$

Rational Points

Rational points on elliptic curves

Describe spaces by polynomial equations:

Sphere (in
$$\mathbb{R}^3$$
)
 $x^2 + y^2 + z^2 = 1$

Elliptic Curve/Torus (in
$$\mathbb{P}^2_{2,3,1}$$
)
 $y^2 = x^3 + fxz^4 + gz^6$, with $f, g \in \mathbb{C}$

Rational points: Solutions to these equations with $(x, y, z) \in \mathbb{O}^3$

 $(\rightarrow$ cf. Fermat's last theorem: integer solutions to $x^n + y^n = z^n$ for $n \ge 3$)

• rational solutions can be "added" in a tricky way to get further rational solutions

 \rightarrow group structure for rational points $\cong \mathbb{Z}^{n-1}$

Example: Group of rational points for n = 3: \mathbb{Z}^2

zero-point/origin

• rational solutions can be "added" in a tricky way to get further rational solutions

 \rightarrow group structure for rational points $\cong \mathbb{Z}^{n-1}$

Example: Group of rational points for n = 3: \mathbb{Z}^2

zero-point/origin

• rational solutions can be "added" in a tricky way to get further rational solutions

 \rightarrow group structure for rational points $\cong \mathbb{Z}^{n-1}$

Example: Group of rational points for n = 3: \mathbb{Z}^2

zero-point/origin

• rational solutions can be "added" in a tricky way to get further rational solutions

 \rightarrow group structure for rational points $\cong \mathbb{Z}^{n-1}$

Example: Group of rational points for n = 3: \mathbb{Z}^2

zero-point/origin

• rational solutions can be "added" in a tricky way to get further rational solutions

 \rightarrow group structure for rational points $\cong \mathbb{Z}^{n-1}$

Example: Group of rational points for n = 3: \mathbb{Z}^2

zero-point/origin

• rational solutions can be "added" in a tricky way to get further rational solutions

 \rightarrow group structure for rational points $\cong \mathbb{Z}^{n-1}$

Example: Group of rational points for n = 3: \mathbb{Z}^2

zero-point/origin

• rational solutions can be "added" in a tricky way to get further rational solutions

 \rightarrow group structure for rational points $\cong \mathbb{Z}^{n-1}$

Example: Group of rational points for n = 3: \mathbb{Z}^2

zero-point/origin

• rational solutions can be "added" in a tricky way to get further rational solutions

 \rightarrow group structure for rational points $\cong \mathbb{Z}^{n-1}$

Example: Group of rational points for n = 3: \mathbb{Z}^2

zero-point/origin

• rational solutions can be "added" in a tricky way to get further rational solutions

 \rightarrow group structure for rational points $\cong \mathbb{Z}^{n-1}$

Example: Group of rational points for n = 3: \mathbb{Z}^2

zero-point/origin

F-theory

Connection to F-theory

F-theory: 12D string theory \rightarrow make 8 dimensions small

Properties of the elliptic fibration determine the 4D effective theory:

● singular elliptic fiber ⇔ non-Abelian gauge symmetry

• *n* rational sections \Leftrightarrow *n* - 1 *U*(1) gauge symmetries:

Properties of the elliptic fibration determine the 4D effective theory:

• singular elliptic fiber \Leftrightarrow non-Abelian gauge symmetry

• *n* rational sections \Leftrightarrow *n* - 1 *U*(1) gauge symmetries:

- 1 rational section \rightarrow zero-section (origin of the group of rational sections)
- n-1 rational sections $\rightarrow U(1)$ gauge symmetries (generators of the group of rational sections)
- \rightarrow corresponds to choosing a basis for the rational points on the torus

invariance of basis choice \Rightarrow cancelation of Abelian gauge anomalies

Andreas Kapfer

Anomalies in Quantum Field Theory

Transformation of the path integral under a classical symmetry:

$$\int \mathcal{D}\Phi \, e^{iS[\Phi]} \mapsto \int \mathcal{D}\Phi \, e^{i\epsilon \int d^4 x \, \mathcal{A}(x)} \, e^{iS[\Phi]}$$

- classical action $S[\Phi]$ invariant by definition
- path integral measure DΦ could transform in general
 ⇒ quantum theory has an anomaly A(x)
- no problem for global symmetries
- disaster for gauge symmetries (gauge symmetry \equiv redundancy)

Condition
$$\mathcal{A}(x) \stackrel{!}{\simeq} 0$$

Possibilities for cancelation:

- $\bullet\,$ add local counterterms $\rightarrow\,$ irrelevant anomaly
- choose matter fields appropriately
- exploit a tree-level mechanism (Green-Schwarz mechanism)

Condition
$$\mathcal{A}(x) \stackrel{!}{\simeq} 0$$

Possibilities for cancelation:

- add local counterterms → irrelevant anomaly
- choose matter fields appropriately
- (exploit a tree-level mechanism (Green-Schwarz mechanism))

Condition
$$\mathcal{A}(x) \stackrel{!}{\simeq} 0$$

Possibilities for cancelation:

- add local counterterms → irrelevant anomaly
- choose matter fields appropriately
- (exploit a tree-level mechanism (Green-Schwarz mechanism))
- \Rightarrow Constraint on the matter fields:

$$U(1)$$
 anomaly cancelation condition $\sum_{
m fermions} q^3 \stackrel{!}{=} 0$

Anomaly Cancelation in F-theory

F-theory on elliptic fibrations:

Change the choice of the zero-section:

- change choice of origin for the group structure of rational sections
- theory should be invariant under choice of zero-section

Anomaly Cancelation in F-theory

F-theory on elliptic fibrations:

Change the choice of the zero-section:

- change choice of origin for the group structure of rational sections
- theory should be invariant under choice of zero-section

Anomaly Cancelation in F-theory

F-theory on elliptic fibrations:

Change the choice of the zero-section:

- change choice of origin for the group structure of rational sections
- theory should be invariant under choice of zero-section

This symmetry reproduces the U(1) gauge anomaly cancelation conditions.

U(1) anomaly cancelation condition $\sum_{
m fermions} q^3 \stackrel{!}{=} 0$

Andreas Kapfer

Gauge Theory and Elliptic Curves

PPSMC April 2015 16 / 17

Conclusions

- concept of fibration, section
- $\bullet\,$ elliptic curve as torus with special points, forming a group $\rightarrow\,$ elliptic fibrations with rational sections
- F-theory compactified on elliptic fibrations: U(1) gauge symmetries given by rational sections
- \bullet basis invariance of rational sections \Rightarrow cancelation of Abelian gauge anomalies
- similar story for non-Abelian gauge anomalies

Outlook

• map further algebraic properties of elliptic curves to corresponding expressions in gauge theory via F-theory