

A novel Silicon Photomultiplier with bulk integrated quench resistor – R&D progress

IMPRS 2015

Munich

8th May 2015

Stefan Petrovics

Ladislav Andricek, Christian Jendrysik, Raik Lehmann, Jelena Ninkovic, Rainer Richter, Florian Schopper

Conventional Silicon Photomultiplier (SiPM)

Conventional Silicon Photomultipliers (SiPMs):

- Array of avalanche photodiodes operated in Geiger-mode
- Read out in parallel \rightarrow signal is sum of all fired cells
- Passive quenching by integrated polysilicon resistor

Deposition of polysilicon resistor and metal grid on top surface:

- Several additional process steps
- Increased stray capacitance
- Obstacles for light
- → limitation of the detection efficiency

SiMPI

SiMPI

Simple

Simple

SiMPI – Advantages and Drawbacks

Advantages:

- No need of polysilicon
- → No metal necessary within the array → free entrance window for light → higher fill factor
- Topologically flat surface
- Simple technology \rightarrow lower costs
- Inherent diffusion barrier against minorities in the bulk → less optical cross talk & less contribution of leakage current

SiMPI – Advantages and Drawbacks

Advantages:

- No need of polysilicon
- → No metal necessary within the array → free entrance window for light → higher fill factor
- Topologically flat surface
- Simple technology \rightarrow lower costs
- Inherent diffusion barrier against minorities in the bulk → less optical cross talk & less contribution of leakage current

Drawbacks:

- Required depth for vertical resistors does not match wafer thickness
- \rightarrow Wafer bonding is necessary for big pixel sizes
- \rightarrow Significant changes of cell size requires bulk material adaption
- Vertical 'resistor' is a JFET \rightarrow non-linear IV \rightarrow longer recovery times

SiMPl Prototype

SiMPl Prototype

Idea & Concept

Technology & Device Simulations

Technology:

impact of parameters such as

- energy and dose of ion beam
- orientation of ion beam
- photo resist angle

Device:

investigation of device behavior under operational conditions

- ightarrow electrical field distribution
- ightarrow electrical potential within
- \rightarrow charge current densities

. . .

Technology & Device Simulations

Technology:

impact of parameters such as

- energy and dose of ion beam
- orientation of ion beam
- photo resist angle

Device:

investigation of device behavior under operational conditions

- ightarrow electrical field distribution
- ightarrow electrical potential within
- \rightarrow charge current densities

...

IMPRS2015- Munich, 08.05.2015

Novel SiPMs with bulk integrated quench resistor – Petrovics Stefan

11

IMPRS2015- Munich, 08.05.2015

Characterisations & Studies of Devices

Why use avalanche photodiodes for tracking ?

Requirements for a particle tracking detector:

- Fast response
- High signal gain and active area
- Sensitivity to particles
- Insensitivity to magnetic fields
- Simple readout design
- Low mass detectors (< 0.1% X₀ per layer)
- High resolution (pixel size < 50μm)
- Low noise levels

IMPRS2015- Munich, 08.05.2015

Why use avalanche photodiodes for tracking ?

Requirements for a particle tracking detector:

- Fast response
- High signal gain and active area
- Sensitivity to particles
- Insensitivity to magnetic fields
- Simple readout design
- Low mass detectors (< 0.1% X₀ per layer)
- High resolution (pixel size < 50μm)
- Low noise levels

Accomplishable by Silicon Photomultipliers

Particle Tracking with SiMPI

- Excellent time stamping due to fast avalanche (sub-ns)
- MIPs generate roughly 80 e-h-pairs/μm
- Inherently high trigger efficiency
 - ightarrow Allows operation at low overbias voltage
 - ightarrow Decrease of dark counts & optical cross talk
- Topologically flat surface \rightarrow easy coupling to electronics
- High fill factor (pitch limited by bump bonding)
- Requirements for bulk resistor less demanding

Active Quenching Concept

- Overcome longer recovery times by implementing active quenching circuits
- Uses current-mode approach
- Active quenching for single pixels
- Possibility to turn off individual pixels
- Parallel readout and measurement possible
- Event selection with specific trigger conditions (validation logic) → decrease of dark counts & optical cross talk
- Quenching time < 1ns
- Pixel recovery < 20 ns
- 50 μm pitch
- 5 MHz frame rate
- 100 ps timing resolution (TDC)
- Fast trigger < 1 ns

Inge Diehl, Karsten Hansen, Katja Krueger, Christian Reckleben, Felix Sefkow

ightarrow promising candidate for tracking

First Efficiency Simulations

→ Simulations: Small overbias voltages sufficient for high Geiger efficiency

- Monte-Carlo simulations of ionisation probability (ionisation coefficients by Van Overstraeten) based on SiMPI device → Geiger efficiency for MIPs
- Overbias voltages ≈ 0.5 V should already provide Geiger efficiency ~ 1
- → Strongly decreased pile up with decreasing overbias voltage

\rightarrow experimental validation required!

First Efficiency Measurements

 Experimental validation of Geiger efficiency simulation with ⁹⁰Sr electron beam

→ Broad energy spectrum and bremsstrahlung from shielding material

- Momentum selection by magnetic field
- Collimation down to spot sizes ~ 200 μm
- Determination of Geiger efficiency by measuring the signal coincidences between SiPM and scintillator
- <u>But</u>: extremely decreased rate of electrons with increasing collimation
- → Obtaining high statistics very time consuming
- → Low energy electrons very susceptible to mounting material
- <u>Also</u>: Testbeam planned for efficiency measurements

First Efficiency Measurements

 Experimental validation of Geiger efficiency simulation with ⁹⁰Sr electron beam

→ Broad energy spectrum and bremsstrahlung from shielding material

- Momentum selection by magnetic field
- Collimation down to spot sizes ~ 200 μm
- Determination of Geiger efficiency by measuring the signal coincidences between SiPM and scintillator
- <u>But</u>: extremely decreased rate of electrons with increasing collimation
- → Obtaining high statistics very time consuming
- → Low energy electrons very susceptible to mounting material
- <u>Also</u>: Testbeam planned for efficiency measurements

Summary and Outlook

Summary

- Novel detector concept for SiPMs with quench resistors integrated into the silicon bulk
 - No polysilicon resistors, no contacts necessary at the entrance window
 - Very simple processing
 - Topologically flat surface for easy coupling to electronics
- SiMPI prototype and characterisations
 - Working quenching mechanism
 - Very promising results (high PDE, low cross talk)
- Particle tracking concept with active quenching circuits
 - SiMPI devices could fulfil detector requirements for tracking
 - Collaboration with DESY for active quenching circuits for SiMPI
 - Promising results from first simulations with active quenching

Open questions & next steps

- Improvement of technology
- Implementation of optical trenches and devising active quenching readout electronics for light detection applications
- Particle detection efficiency measurements with improved setup
- Test beam with first prototypes
- Radiation hardness tests

Summary and Outlook

Summary

- Novel detector concept for SiPMs with quench resistors integrated into the silicon bulk
 - No polysilicon resistors, no contacts necessary at the entrance window Thank you for your
 - Very simple processing
 - Topologically flat surface for easy coupling to electronics
- SiMPI prototype and characterisations
 - Working quenching mechanism
 - Very promising results (high PDE, low cross talk) •
- Particle tracking concept with active quenching circuits
 - SiMPI devices could fulfil detector requirements for tracking
 - Collaboration with DESY for active quenching circuits for SiMPI •
 - Promising results from first simulations with active quenching •

Open questions & next steps

- Improvement of technology
- Implementation of optical trenches and devising active quenching readout ٠ electronics for light detection applications
- Particle detection efficiency measurements with improved setup ٠
- Test beam with first prototypes ٠
- **Radiation hardness tests**

