Recent developments in pQCD beyond MLLA

Redamy Perez Ramos

II.Institut für Theoretische Physik, Universität Hamburg, Germany

RINGBERG WORKSHOP 2008, New Trends in HERA Physics 2008

Outline

• Jets in Quantum Chromodynamics:

- $\bullet~$ production of jets $\rightarrow~$ problems
- Feynman diagrams, probabilistic interpretation of cascading processes
- $\bullet~$ infrared and collinear singularities \rightarrow some resummation approaches in pQCD
- coherence effects and some tools in pQCD

Results

- Single inclusive differential one-particle distribution as a function of $k_{\perp} = \frac{d\sigma}{d \ln k_{\perp}}$ in MLLA and Next-to-MLLA; comparison with CDF p-p data
- Gluon to quark multiplicity ratio in a sub-jet with jet axis from color current
- Conclusions

References

Phys. Rev. D **78** (2008) 014019; Phys.Rev.Lett. **100** (2008) 052002; Phys. Rev. D **78** (2008) 034010.

Part I

Jets in Quantum Chromodynamics

Production of jets

- Partonic cascade: traited in pQCD
 - planar gauge: tree amplitudes ⇒ parton shower picture (probabilistic interpretation)
- Hadronization: advocates for Local Parton Hadron Duality Hypothesis (LPHD)
 - partonic distributions \simeq hadronic distributions: factor \mathcal{K}^{ch}
 - "limiting spectrum:" $Q_0 \sim \Lambda_{QCD}$

• $\alpha_s(Q^2 \rightarrow \Lambda^2_{QCD}) \rightarrow \infty$

 Infrared and collinear singularities ⇒ problems on the convergence of the resumed series through their large logarithmic contributions

• Hadronization (Local Parton Hadron Duality)

Jet calculus approach: "parton shower picture"

 \bullet Exclusive Processes: resummation of all Feynman digrams at a given order in α_{s}

• Inclusive processes (jet calculus): resummation of all leading, sub-leading logarithmic contributions (...) coming from the emission of soft and/or collinear gluons in jets: "planar gauge" \Rightarrow

Infrared and collinear singularites

- collinear singularities: $\Theta \rightarrow \Theta_{min} \Rightarrow$ divergence in $\log \Theta \Rightarrow$ resummation over all collinear logs: $\Theta > \Theta_{min} = Q_0/E_g$
- infrared singularities: energy of the gluon \ll energy of the parent $\Rightarrow \log(1/x)$; with $x = E_g/E_{jet} \ll 1$ (energy fraction of the jet carried away by one parton)
- in general: infrared + collinear
- condition of "Angular Ordering" \Leftrightarrow " k_{\perp} -ordering" in DGLAP evolution

Resummation schemes

- DLA: α_slog(1/x)log Θ (α_s log² ~ 1 ⇒ log ~ α_s^{-1/2}): resummation soft and collinear gluons
 - main ingredient to the estimation of inclusive observables in jets
 - neglects the energy balance
- Single Logs (SL): $\alpha_s \log \Theta$
 - collinear gluons

O

- running of $\alpha_s(k_{\perp} \rightarrow Q_0) \dots " \Rightarrow \beta \times \alpha_s^n \log^n \Theta$ "
- MLLA: $\alpha_s \log \log + \alpha_s \log :$ the SL corrections to DLA

(1)
$$\mathcal{O}(\sqrt{\alpha_s})$$

- "restore" the energy balance
- take into account the running of $\alpha_s(k_\perp)$
- Next-to-MLLA: $\underbrace{\alpha_s \operatorname{loglog}}_{\mathcal{O}(1)} + \underbrace{\alpha_s \operatorname{log}}_{\mathcal{O}(\sqrt{\alpha_s})} + \underbrace{\alpha_s \operatorname{loglog}^{-1}}_{\mathcal{O}(\alpha_s)}$
 - improve the restoration of the energie balance
 - and allow to increase the range in "x" $(k_{\perp} \approx x E_{jet} \Theta)$

Some tools in pQCD

- Exact solution of approached integro-differential equations: MLLA evolution equations at $x \ll 1$
 - for the one-particle inclusive distributions: $D = \frac{\delta}{\delta u} Z(u)$
 - for n-particle correlations (iterative solutions): $D^{(n)} = \frac{\delta^n}{\delta u_1 \dots \delta u_n} Z(u)$
- From $\frac{\partial^n}{\partial u^n}$ over $Z \to MLLA$ Master Equation:

$$\frac{d}{d\ln\Theta}Z_{A}(p,\Theta;\{u\}) = \frac{1}{2}\sum_{B,C}\int_{0}^{1}dz \,\Phi_{A}^{B[C]}(z) \,\frac{\alpha_{s}\left(k_{\perp}^{2}\right)}{\pi} \\ \left(Z_{B}(zp,\Theta;\{u\}) \,Z_{C}((1-z)p,\Theta;\{u\}) - Z_{A}(p,\Theta;\{u\})\right)$$

• Solution of Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) partonic evolution equations in Mellin's space (valid for $x \sim 1$) (we use it in certain integrals)

•
$$\frac{d}{d \ln Q^2} D(x, Q^2) = \int_x^1 \frac{dz}{z} \frac{\alpha_s(Q^2)}{2\pi} \Phi(z) D\left(\frac{x}{z}, Q^2\right)$$

•
$$\underbrace{D(j, Q^2)}_{\text{Known!}} = \int_x^1 dx \, x^{j-1} D(x, Q^2)$$

• Derivatives
$$\frac{d^n}{dj^n}D(j,Q^2) = \int_x^1 dx \, x^{j-1} \ln^n x \, D(x,Q^2), \ n=1,2,\ldots$$

Part II

Main results

Charged hadrons distribution (k_{\perp}) in MLLA and NMLLA

- Single inclusive differential one-particle distribution as a function of $k_{\perp} \frac{d\sigma}{d \ln k_{\perp}}$ in MLLA and Next-to-MLLA
 - MLLA and NMLLA predictions in the "limiting spectrum" $(Q_0 = \Lambda_{QCD})$
 - and beyond " $Q_0 \neq \Lambda_{QCD}$ ": prediction for different masses of charged hadrons

• Measured by CDF in $pp \rightarrow h + X$ collisions:

$$\underbrace{\left(\frac{d\sigma}{d\ln k_{\perp}}\right)^{h}}_{\text{measured}} = \omega \underbrace{\left(\frac{d\sigma}{d\ln k_{\perp}}\right)_{g}}_{?} + (1-\omega) \underbrace{\left(\frac{d\sigma}{d\ln k_{\perp}}\right)_{q}}_{?}$$

Small x (x \ll 1) approximation \Rightarrow analytical results

- $D_{A_0}^A(u = \mathcal{O}(1) \dots)$: DGLAP; $D_A^h(\frac{x}{u} \ll 1 \dots)$: (N)MLLA
- Perturbative Parameter of the expansion, kinematics and variables:
 γ₀² ≃ α_s (ℓ + y); ℓ = ln (1/x), y = ln (k_⊥/Λ), k_⊥ ≈ xEΘ
- Double differential inclusive cross section:

$$\left(\frac{d^2\sigma}{d\ell dy}\right)_{\mathcal{A}_0} \stackrel{x \ll 1}{\approx} \frac{d}{dy} \left[< \mathcal{C} >_{\mathcal{A}_0} (\ell, y) \tilde{D}_g^h(\ell, y) \right]$$

- $< C >_{A_0}(\ell, y) \simeq c_0(\ell, y) \times 1 + c_1(\ell, y) \times \sqrt{\alpha_s} + c_2(\ell, y) \times \alpha_s + \mathcal{O}(\alpha_s^{3/2})$: color current (varying color factor): evolution of the jet between Θ_0 and Θ .
- $\tilde{D}_{g}^{h}(\ell, y)$: ((N)MLLA evolution equations) describes the hump-backed plateau in the limit $Q \gg Q_0 \sim \Lambda_{QCD}$ (limiting spectrum)

ABARABA B 900

Reminder

Hump-backed plateau
$$\tilde{D}^h \equiv \mathcal{K}^{ch} \times \frac{1}{\sigma} \frac{d\sigma}{d \ln (1/x)}$$
 at Z^0 peak: $Q = 91.2$ GeV

$$*~Q \gg Q_0 \sim \Lambda_{QCD}$$
, $\gamma_0 pprox 0.5$

"Next-to-MLLA" ev. eq. for the single inclusive spectrum

$$\begin{split} & \underbrace{\tilde{D}_{g}^{h}(\ell, y)}_{gluon \ jet} = \delta(\ell) + \int_{0}^{\ell} d\ell' \int_{0}^{y} dy' \gamma_{0}^{2}(\ell' + y') \Big[\underbrace{1}_{DLA} - (a_{1} + a_{2} \psi_{\ell}(\ell', y')) \delta(\ell' - \ell) \Big] \\ & \times \tilde{D}_{g}^{h}(\ell', y') \\ & \underbrace{\tilde{D}_{q}^{h}(\ell, y)}_{quark \ jet} = \delta(\ell) + \frac{C_{F}}{N_{c}} \dots \tilde{D}_{g}^{h}(\ell', y') \dots \quad \underbrace{\ell = \ln(1/x)}_{infrared}, \underbrace{y = \ln(k_{\perp}/\Lambda)}_{collinear} \end{split}$$

• DLA term: $\propto {\cal O}(1)$

• hard single logs: $\propto a_1 \sim \mathcal{O}(\sqrt{\alpha_s}) \& \propto a_2(\psi_\ell = \frac{\partial D^h}{\partial \ell}) \sim \mathcal{O}(\alpha_s)$

•
$$\tilde{D}_{g}^{h}(\ell, y) = (\ell + y) \iint \frac{d\omega d\nu}{(2\pi i)^{2}} e^{\omega \ell} e^{\nu y} \int_{0}^{\infty} \frac{ds}{\nu + s} \left(\frac{\omega(\nu + s)}{(\omega + s)\nu}\right)^{\sigma_{0}} \left(\frac{\nu}{\nu + s}\right)^{\sigma_{1} + \sigma_{2}} e^{-\sigma_{3} s}$$

• $\sigma_{0} = \frac{1}{\beta_{0}(\omega - \nu)}, \qquad \sigma_{1} = \frac{a_{1}}{\beta_{0}}, \qquad \sigma_{2} = -\frac{a_{2}}{\beta_{0}}(\omega - \nu), \qquad \sigma_{3} = -\frac{a_{2}}{\beta_{0}} + \lambda$
• $\tilde{D}_{q}^{h} \simeq \frac{C_{F}}{N_{c}} \left(1 + r_{1}\sqrt{\alpha_{s}} + r_{2}\alpha_{s}\right) \tilde{D}_{g}^{h}$

- 1 -

Color current $< C >_{A_0} (\ell, y)$ at Q = 155 GeV (CDF)

Limitations of the method \Rightarrow ranges of validity in MLLA and NMLLA

- 2 contradictory conditions should be simultaneously satisfied: $x \ll 1$ and $\alpha_s(k_\perp \approx x E\Theta) \ll 1$
- At too large k_⊥, the small x approximation fails (k_⊥ ≈ xEΘ) because of positivity problems ⇒ ∃k_{⊥max} = f(Q) (NMLLA>MLLA).

• When $k_{\perp} \rightarrow \Lambda_{QCD}$, the perturbative expansion fails $(\alpha_s(k_{\perp}) \rightarrow \infty)$

•
$$k_{\perp} > k_{\perp \min} \Rightarrow y = \ln \left(\frac{k_{\perp}}{\Lambda} \right) > 1.4 \Leftrightarrow k_{\perp} > 1 \text{ GeV}$$

⇒ ∃ range of validity: $k_{\perp min} \le k_{\perp} \le k_{\perp max}$ (NMLLA>MLLA) which increases when energy scale increases.

→ LHC will supply tests of pQCD in a much larger domain of k_{\perp} than the Tevatron.

<u>Comparison</u> of the CDF data with predictions for $\frac{d\sigma}{d \ln k}$

Phys.Rev.Lett. 100 (2008) 052002

- preliminary results from CDF in very good agreement with NMLLA expectations
- range of validity enlarged in NMLLA

Beyond the limiting spectrum

• $\lambda = \ln(Q_0/\Lambda_{QCD}) = 0$: limiting spectrum • $\lambda = \ln(Q_0/\Lambda_{QCD}) \neq 0$: beyond

Phys.Rev.Lett. 100 (2008) 052002

Multiplicities in sub-jets with jet axis from color current

- Average multiplicity (
 number of particles) inside the sub-jet of half-opening angle Θ:
 - $\hat{N}_{A_0}^h(\Theta_0,\Theta) \approx \frac{1}{N_c} \langle C \rangle_{A_0}(\Theta_0,\Theta) N_G^h(\Theta); \ N_G^h(\Theta) \simeq \exp\left(\int \gamma(E\Theta) d\Theta\right)$

•
$$\gamma \simeq \sqrt{\alpha_s}(1 - a_1\sqrt{\alpha_s} - a_2\alpha_s)$$
 from Next-to-MLLA ev. eq.

•
$$A_0 = Q$$
, $\langle C \rangle_Q (\Theta \equiv \Theta_0) = C_F$; $A_0 = G$, $\langle C \rangle_G (\Theta \equiv \Theta_0) = N_c$

• Ratio: $r(\Theta_0, \Theta) = \frac{N_G}{N_Q}(\Theta_0, \Theta) = \frac{\langle C \rangle_G}{\langle C \rangle_Q}(\Theta_0, \Theta)$

• $r(\Theta \equiv \Theta_0) \simeq \frac{N_c}{C_F} (1 - r_1 \sqrt{\alpha_s} - r_2 \alpha_s)$ from Next-to-MLLA ev. eq.

Multiplicity ratio for jet $\Theta_0 \sim 1$ and sub-jet $\Theta \leq \Theta_0$

Ochs & Pérez-Ramos, Phys. Rev. D 78 (2008) 034010

• $Y_{\Theta} = \ln\left(\frac{E\Theta}{Q_0}\right)$: unreliability for $Y_{\Theta} \lesssim 3$ or $E\Theta \lesssim 5$ GeV

Redamy Perez Ramos (DESY)

Jet calculus

/ 24

Conclusions

- Very good agreement between NMLLA predictions and the CDF data
 in a broader k₁ range than in MLLA
 - NMLLA→MLLA asymptotically
- Further test of LPHD hypothesis (partons roughly behave as hadrons)
 - pQCD successfully predicts the shape of $\frac{1}{\sigma} \frac{d\sigma}{d \ln k_{\perp}}$
 - also confirmed for multiplicities, multiplicity correlators (KNO problems where an analogous set of NMLLA corrections was included!), hump-backed plateau
- Limiting spectrum proves once again to be the most successful to describing the data
- The gluon to quark average multiplicity ratio inside a sub-jet follows the same trend as that inside a jet (full event) but suffers a variation of $\approx 20\%$ from the color current (not measured yet)