Factorization Breaking in Diffractive Dijet Production

60

Gustav Kramer Universitaet Hamburg August 28, 2008

Publications

With Michael Klasen

 PLB 508 (2001) 259:
 EPJC 38 (2004) 39:
 PRL 93 (2004) 232002:
 JPG 31 (2005) 1391: arXiv:0806.2269

 $\gamma p \rightarrow 2 \text{ jets}+n$ $\gamma p \rightarrow 2 \text{ jets}+p$ $\gamma^* p \rightarrow 2 \text{ jets}+p$ New fact. scheme Review based on H1 and ZEUS data

Motivation

Hard diffraction: \rightarrow Does factorization hold?

Deep inelastic scattering: Yes \rightarrow Direct photoproduction Hadroproduction: No \rightarrow Resolved photoproduction

Why next-to-leading order? $\rightarrow \sigma_{tot} = \sigma_{dir}(\mathbf{x}_{\gamma'}M_{\gamma}) + \sigma_{res}(\mathbf{x}_{\gamma'}M_{\gamma})$ $\rightarrow At LO \mathbf{x}_{\gamma} = \mathbf{1}$, but at NLO $\mathbf{x}_{\gamma} \leq \mathbf{1}$ $\rightarrow \log(M_{\gamma})$ -dependence cancels

Diffr. hadroproduction of dijets:

CDF Coll., PRL 84 (2000) 5043

G.Kramer, Universitaet Hamburg Michael Klasen, LPSC Grenoble

Kinematics

Inclusive DIS:

Diffractive processes at HERA:

H1 Coll., EPS 2003 and DIS 2004

 $s = (k+p)^2, Q^2 = -q^2, \text{ and } y = \frac{qp}{kp}$ **Diffractive DIS:** $M_X^2 = p_X^2$ and $t = (p - p_Y)^2$, $M_Y^2 = p_Y^2$ and $x_{I\!\!P} = \frac{q(p - p_Y)}{qp}$ **Experimental cuts:** 0.30.65 $< 0.03 \\ < 0.01 G \\ > 5 GeV \\ > 4 GeV \\ < 2 \\ < 0.03 \\ = 0.03$ $0.01 \ \mathrm{GeV}^2$ $E_T^{jet1} \\ E_T^{jet2} \\ \eta_{lab}^{jet1,2}$

 $x_{I\!P}$

 M_Y

-t

 $1.6 \,\,\mathrm{GeV}$

 $1 \,\,\mathrm{GeV^2}$

<

<

G.Kramer, Universitaet Hamburg Michael Klasen, LPSC Grenoble

Diffractive Parton Distributions

Double factorization:

Hard QCD factorization:

$$\frac{d^2\sigma}{dx_{I\!\!P}dt} = \sum_a \int_x^{x_{I\!\!P}} d\xi \sigma_a^{\gamma*}(x,Q^2,\xi) f_a^D(\xi,Q^2;x_{I\!\!P},t)$$

Regge factorization: $f_a^D(x,Q^2;x_{\mathbb{I\!P}},t) = f_{\mathbb{I\!P}/p}(x_{\mathbb{I\!P}},t)f_{a/\mathbb{I\!P}}(\beta = x/x_{\mathbb{I\!P}},Q^2)$

Pomeron flux factor: $f_{I\!\!P/p}(x_{I\!\!P},t) = x_{I\!\!P}^{1-2\alpha_{I\!\!P}(t)} \exp(B_{I\!\!P}t)$

Pomeron tracectory:

$$\alpha_{I\!P}(t) = \alpha_{I\!P}(0) + \alpha'_{I\!P}t$$

G. Ingelman, P. Schlein, PLB 152 (1985) 256

G.Kramer, Universitaet Hamburg Michael Klasen, LPSC Grenoble

Proof of Hard Factorization

Diffractive deep inelastic scattering:

J.C. Collins, PRD 57 (1998) 3051

Light cone coordinates: $\boldsymbol{q}^{\mu} = (q^{+}, q^{-}, \boldsymbol{q}_{T})$

Leading regions: **f** H: $q^{\mu} \approx O(Q)$ **f** J: $l^{\mu} \approx (0, Q/\sqrt{2}, \mathbf{0}_{T})$ **f** A: $|k^{\mu}| \ll O(Q)$

Poles in k+-plane: Final state: Upper half-plane

Initial state: Lower half-plane

G.Kramer, Universitaet Hamburg Michael Klasen, LPSC Grenoble

Multipomeron Exchanges

G.Kramer, Universitaet Hamburg Michael Klasen, LPSC Grenoble

Diffractive Photoproduction of Dijets

Cross section:

$$\begin{split} d\sigma^{D}(ep \to e+2 \text{ jets} + X' + Y) &= \\ \sum_{a,b} \int_{t_{\text{cut}}}^{t_{\min}} dt \int_{x_{I\!\!P}}^{x_{I\!\!P}^{\max}} dx_{I\!\!P} \int_{0}^{1} dz_{I\!\!P} \int_{y_{\min}}^{y_{\max}} dy \int_{0}^{1} dx_{\gamma} \\ f_{\gamma/e}(y) f_{a/\gamma}(x_{\gamma}, M_{\gamma}^{2}) f_{I\!\!P/p}(x_{I\!\!P}, t) f_{b/I\!\!P}(z_{I\!\!P}, M_{I\!\!P}^{2}) \\ d\sigma^{(n)}(ab \to \text{jets}). \end{split}$$

Photon flux: Weizsäcker-Williams approximation

$$f_{\gamma/e}(y) = \frac{\alpha}{2\pi} \left[\frac{1 + (1-y)^2}{y} \ln \frac{Q_{\max}^2(1-y)}{m_e^2 y^2} + 2m_e^2 y (\frac{1-y}{m_e^2 y^2} - \frac{1}{Q_{\max}^2}) \right]$$

Diffractice parton distributions (DPDFs)

- DPDFS from diffractive DIS measurements of F_2^D:
- H1 Coll., A. Aktas et al., Eur. Phys. J C 48 (2006) 715
- H1 2006 fit A and H1 2006 fit B, both M_Y < 1.6 GeV</p>
- H1 Coll., A. Aktas et a., JHEP 10 (2007) 042
- H1 2007 fit jets
- ZEUS Coll., S. Chekanov et al., Eur. Phys. J. C38 (2004) 43
- ZEUS LPS fit, measurement for ep -->e'pX, only

roton, no additional proton dissociation in final state

Factorization Breakink at NLO

Factorization Breaking at NLO

Factorization Breaking at NLO

Factorization Breaking in NLO

E_{T} -Distribution

Importance of large E_T :

C Direct process dominates
C IS singularity less important
C Hadronization corrections small
C Experimentally directly accessible
C Less sensitive than xγ

Result:

- Suppressed result fitted at
- Low E_T
- Unsuppressed 50% too low
- for low E_T
- Suppression less at high E_T

E_T-distribution for preliminary data

Largest E_T-bin
fitted better with R=1
(unsuppressed)
resolved suppression only should fit better

Factorization Scale Dependence

MK, Rev. Mod. Phys. 74 (2002) 1221

M. Klasen, G. K., EPJC 38 (2004)39

G.Kramer, Universitaet Hamburg Michael Klasen, LPSC Grenoble

Factorization Scale Dependence (1)

Michael Klasen, G. K., JPG 31 (2005) 1391

G.Kramer, Universitaet Hamburg Michael Klasen, LPSC Grenoble

G.Kramer, Universitaet Hamburg Michael Klasen, LPSC Grenoble

Breaking in resolved or resolved/direct-IS

Breaking in resolved or resolved/direct_IS

Breakind in resolved or resolved/direct-IS

ET-dependence perfectly described by resolved and resolved/direct-IS Supression factors slightly different R=0.35 (resolved) R=0.32 (resolved/direct-IS)

Factorization Breaking at NLO, high E_T

Factorization Breaking at NLO, high E_T

Factorization Breaking, high E_T

Factorization Breaking, high E_T

- Two lowest E_T bins agree
- Highest E_T bin agrees bettter
- with unsuppressed
- Resolved suppression only would account for
- r this

Breaking in resolved or resolved/direct-IS

Breaking in resolved or resolve/direct-IS

Breaking in resolved or resolved/direct-IS

Breaking in resolved or resolved/direct-IS

 All three E_T bins
 agree very well difference to global suppression not significant

- R=0.62 global suppr.
- R=0.38 resolved supp.

R=0.32 resolved/direct_IS supp.

Factorization Breaking at NLO

Factorization Breaking at NLO, ZEUS

Factorization Breaking at NLO, ZEUS

Factorization Breaking at NLO, ZEUS

Two highest ET-bins better described with R=1

Breaking in resolved or resolved/direct-IS

Breaking in resolved or resolved/direct-IS

Breaking in resolved or resolved/direct_IS

Breaking in resolved or resolved/direct-IS

Resolved or resolved/direct-IS
slightly better
than global suppression
R=0.71 global supp.

- R=0.53 resolved supp.
- R=0.45 resolved/direct-IS suppression

Ratio data/theory, low-E_T and high E_T

Ratio data/theory : ZEUS different norm

Conclusions

Hard diffraction: Factorizable or not?

- \checkmark Deep inelastic scattering: Yes \rightarrow Diffractive parton densities
- \checkmark Hadronic scattering: No \rightarrow Multipomeron exchanges
- Diffractive photoproduction of dijets: Yes global suppression of order 0.5 definitely established, suppression E_T dependent Initial state singularity at NLO
- Reolved suppression only or resolved/direct-IS suppression
- describes data almost equally well , suppression factor~1/3,
- Iittle E_T dependence
- Agrees with two-channel eikonal model of Kaidalov et al.:
- \checkmark Generalized vector meson dominance: $\gamma \rightarrow \rho$, ω , ...
- Rapidity gap survival probability: R = 0.34