Combined HERA DIS data and PDF fits

New Trends in HERA Physics, Ringberg'08

Claire Gwenlan (University of Oxford, STFC Fellow) on behalf of the HERA Structure Functions Working Group

<u>Outline</u>

- Introduction
- Combined HERA DIS data
- NLO QCD fit to the data
- Summary

Motivation

- HERA collider has provided a wealth of e[±]p data (from 94-07)
- measurements of Deep Inelastic Scattering (DIS), made by H1 and ZEUS, crucial for constraining quark and gluon densities in the proton
- analysis of HERA-I data now (almost) complete and best precision HERA-II measurements coming soon ...

NOW: want to **maximise** impact of HERA by **combining** H1 and ZEUS data \rightarrow obtain best precision cross sections \rightarrow leading to most precise extractions of the proton parton density functions (PDFs)

HERA collider

Deep Inelastic Scattering

Processes: Neutral Current (NC): $ep \rightarrow eX$; Charged Current (CC): $ep \rightarrow vX$

NC: "reduced" cross section:

Kinematic Variables:

- 4-momentum transfer ("resolution"):
 Q²=-q²=-(k-k')²
- Bjorken scaling variable: x=Q²/2p.q
- inelasticity: y=p.q/p.k

related via s: Q²=sxy [where √s=COM energy: s=(k+p)²]

CC: similar decomposition, but **different** quark combinations accessed in e^+p or $e^-p \rightarrow$ **flavour sensitive**

Combined HERA DIS data

AIM: combine H1 and ZEUS inclusive NC and CC DIS data

specifically: "reduced" DIS cross sections; HERA I data only (so far!)

some details:

- combination method (developed by A. Glazov) uses an iterative X² minimisation → takes full account of correlated systematics
- different technologies of the H1 and ZEUS detectors exploited to "cross-calibrate", and hence improve the systematic uncertainties
- key assumption: the two experiments are measuring the same cross section at the same kinematic point

Presented here: preliminary results, as submitted to Lepton-Photon '07

NC and CC data sets

1153 data points in total; $Q^2 > 1.5 \text{ GeV}^2$

Based on published (as in summer'07) NC and CC data from HERA I:

input data: **published** HERA-I cross sections [total lumi.: ~240 pb⁻¹]

data set		x range		Q^2 range		\mathcal{L}	comment
				(GeV^2)		pb^{-1}	
H1 NC min. bias	97	0.00008	0.02	1.5	12	1.8	$e^+p \sqrt{s} = 301 \text{GeV}$
H1 NC low Q^2	96 - 97	0.000161	0.20	12	150	17.9	$e^+p\sqrt{s} = 301 \mathrm{GeV}$
H1 NC	94 - 97	0.0032	0.65	150	30000	35.6	$e^+p \sqrt{s} = 301 \text{GeV}$
H1 CC	94 - 97	0.013	0.40	300	15000	35.6	$e^+p\sqrt{s} = 301 \text{GeV}$
H1 NC	98 - 99	0.0032	0.65	150	30000	16.4	$e^- p \sqrt{s} = 319 \text{ GeV}$
H1 CC	98 - 99	0.013	0.40	300	15000	16.4	$e^- p \sqrt{s} = 319 \text{ GeV}$
H1 NC	99 - 00	0.00131	0.65	100	30000	65.2	$e^+p \sqrt{s} = 319 \mathrm{GeV}$
H1 CC	99 - 00	0.013	0.40	300	15000	65.2	$e^+p \sqrt{s} = 319 \mathrm{GeV}$
ZEUS NC	96 - 97	0.00006	0.65	2.7	30000	30.0	$e^+ p \sqrt{s} = 301 \text{GeV}$
ZEUS CC	94 - 97	0.015	0.42	280	17000	47.7	$e^+p \sqrt{s} = 301 \text{GeV}$
ZEUS NC	98 - 99	0.005	0.65	200	30000	15.9	$e^- p \sqrt{s} = 319 \text{ GeV}$
ZEUS CC	98 - 99	0.015	0.42	280	30000	16.4	$e^- p \sqrt{s} = 319 \text{ GeV}$
ZEUS NC	99 - 00	0.005	0.65	200	30000	63.2	$e^+p \sqrt{s} = 319 \text{GeV}$
ZEUS CC	99 - 00	0.008	0.42	280	17000	60.9	$e^+ p \sqrt{s} = 319 \text{GeV}$

NB: H1 minimum bias ($Q^2 < 12 \text{ GeV}^2$) moved up by 3.4% after re-analysis of luminosity

NC e⁺p example

$$\sigma_r^{e^{\pm}p \to e^{\pm}X} = F_2 - \frac{y^2}{Y_+}F_{\perp} \mp \frac{Y_-}{Y_+}xF_3$$

EXAMPLE data set for averaging: e⁺p NC DIS from H1 and ZEUS

precise measurements from two experiments:-

uncertainties:

- Q² <100 GeV² :
$$\delta_{stat}$$
 <1%, δ_{syst} <3%

 $-Q^{-} > 1000 Gev^{-}$. $O_{stat} > O_{syst}$

these data (plus others, as listed on previous slide) to be combined into average "HERA data set"

HERA combination method

Procedure (in a nutshell):

- i. move all data points to **common** (x,Q^2) grid
- ii. transform data to **common** proton beam energy
- iii. calculate average values and uncertainties
- iv. evaluate uncerts. due to combination procedure

further details on next slides \rightarrow

move all data points to **common** (x,Q²) grid

- essentially: H1 binning in x; ZEUS binning in Q²
- shift measured data by **simple interpolation** using H1PDF2k:

$$\sigma_{ep}^{meas}(x_{grid}, Q_{grid}^2) = \frac{\sigma_{ep}^{th}(x_{grid}, Q_{grid}^2)}{\sigma_{ep}^{th}(x, Q^2)} \sigma_{ep}^{meas}(x, Q^2)$$

NB: sensitivity of interpolation to choice of PDF checked using ZEUS-Jets:
- NC shift factors agree to within a few permille;
- CC to <2% (i.e. much less than statistical uncertainties)

Beam energy correction

transform data to $E_p = 920$ GeV beam energy:

simple beam energy correction for CC data:

 $\sigma_{CC\ 920}^{e^{\pm}p}(x,Q^2) = \sigma_{CC\ 820}^{e^{\pm}p}(x,Q^2) \frac{\sigma_{CC\ 920}^{th,e^{\pm}p}(x,Q^2)}{\sigma_{CC\ 820}^{th,e^{\pm}p}(x,Q^2)}$

additive beam energy correction performed for NC data: $\sigma_{NC}^{e^{\pm}p}{}_{920}(x,Q^2) = \sigma_{NC}^{e^{\pm}p}{}_{820}(x,Q^2) + \Delta \sigma_{NC}^{e^{\pm}p}(x,Q^2,y_{920},y_{820}).$ $\Delta \sigma e^{\pm}p_{NC}(x,Q^2,y_{920},y_{820}) = F_L(x,Q^2) \left[\frac{y_{820}^2}{Y_{820}^+} - \frac{y_{920}^2}{Y_{920}^+}\right] + xF_3(x,Q^2) \left[\pm \frac{Y_{820}^-}{Y_{820}^+} \mp \frac{Y_{920}^-}{Y_{920}^+}\right].$

systematic uncertainty estimate: compare $F_L=0$ and $F_L=F_L(H1PDF2k)$ - up to 5% at large y \rightarrow assigned as a correlated "procedural" systematic

A. Glazov [DIS'05, HERA-LHC ws]

<u>HERA averaging</u> [uses Lagrange Multiplier (or "Hessian") method]: model-independent* combination of H1 and ZEUS data, prior to QCD analysis, taking full account of correlated systematics

*<u>only</u> theoretical input to procedure:

H1 and **ZEUS** measure the **same** cross sections at the **same** x,Q²,y [i.e. we assume physics is the same, either side of the HERA ring!!!]

this gives a **strong constraint** \rightarrow each experiment **calibrates** the other \rightarrow works well since **systematic sources** rather **different** between experiments

method minimises the following probability (X²) distribution \rightarrow

X² definition

= standard average if $\Delta \alpha_i = 0$

Mⁱ : **measured** central values

 ∂M^i

 $\partial \alpha_i$

- σ_i : statistical and uncorrelated systematic uncertainties of M
- σ_{α_j} : correlated systematic uncertainties
 - : sensitivity of datum i to systematic uncertainty j
- M^{ittue} : fitted **combined** H1-ZEUS data [i.e. the "true" HERA values]
- $\Delta \alpha_i$: fitted shifts of **correlated uncertainties**

It's a **cross-calibration** of correlated systematics between different data sets

X² definition

CAVEAT:

- in principle, a nice simple X², which allows minimisation by **linear equations**
- **unbiased** for "additive" uncertainties (those independent of central value)
- BUT for cross sections, many uncertainties are "multiplicative" (ie. proportional to the central value)
- → introduces bias towards smaller averages: i.e. a smaller Mⁱ will have a smaller relative uncertainty and hence give a smaller X²

bias can be avoided by **modifying the definition** of the $X^2 \rightarrow$

Revised X² definition

minimisation is now non-linear → use an iterative procedure:

- 1. minimise original X² to find an initial approximation {M^{i,true}}
- 2. translate multiplicative uncertainties to additive: $\sigma_i \rightarrow \sigma_i (M^{i,true}/M^i)$
- 3. repeat step 1.
- \rightarrow convergence is usually after two iterations

cov(M^{i,true}, M^{j,true}) gives the **error matrix** for the combined data

Uncertainties

treatment/prescription:

- statistical and uncorrelated systematics combined in quadrature to give total point-to-point uncorrelated uncertainty (σ_i)
- treatment of **correlated** systematic uncertainties:
 - correlated **between** data sets of **<u>same</u> experiment**:
 - normalisation (clearly treat as **multiplicative**)
 - others (e.g. energy scale): additive or multiplicative? Debatable!!!
 extremes: treat all as "additive" and all as "multiplicative"
 - → assign difference as additional correlated "procedural" uncert.
 - correlations **between** experiments? (next slide)

in total: 43 sources of correlated systematics from the data

Correlations between exps.?

consideration of correlations between H1 and ZEUS:

- correlations **between** experiments?
 - similar methods for MC simulations, calibration techniques, ...
 - \rightarrow some correlations should exist

identified twelve possible uncertainties of common origin: CHECK: take all pairs as correlated or uncorrelated in turn \rightarrow calculate 2^{12} -1 alternative averages \rightarrow determine deviations from central value

- → mostly negligible; largest differences arise from hadronic energy scale and photoproduction background
- → deviations from these two sources treated as "procedural" uncertainties

Procedural uncertainties

4 sources of uncertainty from the combination procedure

summary of sources:

- centre-of-mass energy correction
 - mostly at permille level, but up to 5% at largest y, Q²~10 GeV²
 [note: if only data with y < 0.35 transformed in centre-of-mass energy (as in most recent combinations), this uncertainty reduces to < 0.5%]
- additive versus multiplicative systematics
 - < 1% except at large x,Q²
- correlations **between** experiments:
 - hadronic energy scale: 1% at low y
 - subtraction of **photoproduction** background: 1-2% at large y

these uncertainties are added to the averaged data points [at **few permille level** across **most** of the **kinematic plane**, with few exceptions]

Fit quality

1153 individual NC and CC measurements from HERA I averaged to 554 points

resulting good quality of fit:

X²/dof=510/599

	pulls	
	mean	sigma
(a) NC e+p	-0.09	1.4
(b) NC e-p	0.01	0.7
(c) CC e+p	-0.05	1.7
(d) CC e-p	0.1	0.8

→ no significant tensions seen across kinematic plane

Note: 43 systematic uncertainties from data and 4 from combination procedure

Results (i): NC e⁺p

<u>**REMINDER:**</u> individual measurements from H1 and **ZEUS** [zoom in on three example x values]

HERA I e⁺p Neutral Current Scattering - H1 and ZEUS

Results (i): NC e⁺p

<u>**REMINDER:**</u> individual measurements from **H1** and **ZEUS** [zoom in on three example x values]

Compared to **combined data-set** (solid points)

HERA I e⁺p Neutral Current Scattering - H1 and ZEUS ور(x,Q²) 1.4 x=0.002 • HERA I e^+p (prel.) □ ZEUS 1.2 • H1 1 x=0.02 0.8 HERA Structure Functions Working Group 0.6 0,4 x=0.25 0.2 0 10^{2} 10^{4} 10^{3} 10 1 Q^2 / GeV²

Results (i): NC e⁺p

Results (ii): NC e⁺p

NC e⁺p [at low Q²]: combined data compared to published H1 and ZEUS PDF fits to (their own) data from HERA I $\sigma_r^{}(x,Q^2)$ $O^2 = 1.5 \, \text{GeV}^2$ $Q^2 = 2 \text{ GeV}^2$ $Q^2 = 2.7 \text{ GeV}^2$ $Q^2 = 3.5 \, \text{GeV}^2$ 3. 22. 0 $O^2 = 4.5 \text{ GeV}^2$ $Q^2 = 6.5 \text{ GeV}^2$ $Q^2 = 8.5 \text{ GeV}^2$ $Q^2 = 10 \text{ GeV}^2$ 1 Working Group 0 $O^2 = 12 \text{ GeV}^2$ $O^2 = 22 \text{ GeV}^2$ $O^2 = 15 \text{ GeV}^2$ $O^2 = 18 \text{ GeV}^2$ **HERA Structure Functions** 1 0 $O^2 = 60 \text{ GeV}^2$ $O^2 = 27 \text{ GeV}^2$ $O^2 = 35 \text{ GeV}^2$ $O^2 = 45 \text{ GeV}^2$ 1 and could d 0 10-3 10⁻¹ $O^2 = 70 \text{ GeV}^2$ $O^2 = 90 \text{ GeV}^2$ $O^2 = 120 \text{ GeV}^2$ Х HERA I (prel,) 1 H1 2000 PDF ZEUS-JETS 0 10-3 10-1 10⁻³ 10⁻¹ 10^{-3} 10^{-1} Х

HERA I e⁺p Neutral Current Scattering - H1 and ZEUS

Results (iii): NC e⁺p

NC e⁺p [at high Q²]: combined data compared to published H1 and ZEUS PDF fits to (their own) data from HERA I

[e-p equivalent in backups]

Results (iv): CC e⁺p

CC e⁺p:

combined data compared to published H1 and ZEUS PDF fits to (their own) data from HERA I

[e-p equivalent in backups]

HERA I e⁺p Charged Current Scattering - H1 and ZEUS

Results (cont.)

some final comments on the results

- all uncertainties within 1 sigma of original, published values
 [except normalisation of H1 low-Q² (96-97) → moved up by 1.6 sigma]
- almost all systematics improved. most significantly:
 - H1 backward calorimeter energy scale:- factor of 3
 - ZEUS forward hadronic energy modelling:- factor of 4
- overall precision improved
 - $Q^2 < 12 \text{ GeV}^2$: H1 and ZEUS separately ~2-3%; combined <2%
 - medium-Q²: precision reaches 1.5%
 - high-Q²: 10% level [statistics important here]

systematics now **smaller** than statistical uncerts. over most x,Q²

QCD fit to the combined data

HERA NLO QCD fit

Presented here: preliminary results, as submitted to ICHEP'08

HERA PDF parameterisation

Choose form of PDF parameterisation at $Q_0^2 = 4 \text{ GeV}^2$

add **D**,**E**,**F**... until no further X² advantage

→ 11 free parameters 28

HERA PDF parameterisation

some more notes:

- HERA PDF parameterisation inspired by both H1 and ZEUS
 but less model dependence on B parameters than H1
 no need for additional x(dbar-ubar) input, as in ZEUS
- H1 and ZEUS-style (**optimised**) parameterisations also looked at and used as model cross-checks (see backups)

"HERA" PDF parameterisation:

- results in **best** X² (although all three options are good)
- gives most **conservative** uncertainties

HERA PDF parameterisation: attempt at "best of both worlds"

More details

extra info on the fit:

- NLO DGLAP framework used to evolve PDFs in Q²
- heavy flavour scheme: Zero-Mass Variable-Flavour-Number [for now; but work ongoing with General-Mass VFN schemes]
- renormalisation and factorisation scales: Q²
- fit **573* combined** HERA-I NC and CC data points
- total of **11 free parameters** in the PDF fit (details on previous slide)

further fixed parameters:

- $Q_0^2 = 4 \text{ GeV}^2$ (starting scale)
- $Q_{min}^2 = 3.5 \text{ GeV}^2$ (minimum Q² cut on fitted data)
- $m_c = 1.4 \text{ GeV}$ (charm mass); $m_b = 4.75 \text{ GeV}$ (beauty mass)
- $\alpha_s(M_Z) = 0.1176$ [PDG2006 value] (strong coupling)

Systematic error treatment

HERA **combination** procedure has already taken **full account** of **correlated systematic uncertainties** in the data:-

choice of treatment of uncertainties in HERA PDF fit:-

- combine 43 systematic uncertainties of the data with their statistical uncertainties, in quadrature;
- **OFFSET** the 4 systematic uncertainties arising from the combination

[also checked:- treat all 47 systematics:

- in quadrature: **X²=428/562**
- as correlated: **X²=553/562**

all three methods **give similar** PDF central values and uncertainties]

self-consistency and small systematics of the combined HERA data allows the use of $\Delta X^2=1$ to calculate the PDF parameter uncertainties

X²/dof=477/(573-11)

Model uncertainties

• several sources of model uncertainty considered:

((i) variations to be added to total PDF uncertainty (in quadrature):						
ĺ		model variation	nominal	variations			
	m _c	charm mass (GeV)	1.4	1.35, 1.5			
	m _b	beauty mass (GeV)	4.75	4.3, 5.0			
	f _s	strange sea fraction at Q ₀ ²	0.33	0.25, 0.40			
	f _c	charm sea fraction at Q ₀ ²	0.15	0.12, 0.18			
	Q_0^2	starting scale (GeV ²)	4.0	2.0, 6.0			
	Q _{min} ²	cut on data included (GeV ²)	3.5	2.5, 5.0			

[NB. correlated variations: i. for Q_0^2 variation, f_s and f_c also varied; ii. for m_c variation, f_c also varied

(ii) variations used as **model cross-checks** (shown in backups):

	model variation	nominal	variations
$\alpha_{s}(M_{Z})$	strong coupling	0.1176	0.1156, 0.1196
xf(x)	PDF parameterisation	"HERA"	H1-, ZEUS-styles

Results (i): NC e⁺p comparison

Neutral Current e⁺p

"HERAPDF0.1": fit quality to the combined HERA-I data for NC e⁺p

uncertainties on both data and fit included

beautifully **precise** data:very well described by **HERA-I PDF** [uncertainties can barely be resolved except at highest x,Q²]

Results (ii): NC e⁺p comparison

Neutral Current e⁺p

in more detail: zoom in on **three xvalues** from plot on previous slide

"HERAPDF0.1" is compared to previously published PDFs from H1 and ZEUS

scaling violations at low x clearly visible \rightarrow tight constraints on gluon

Results (iii): NC e[±]p

NC e[±]p [at high Q²]

"HERAPDF0.1":

fit quality to the combined HERA-I data for NC e⁺p and e⁻p at high Q²

uncertainties on both data and fit included

difference between e^+p and e^-p NC at high Q^2 gives $xF_3 \rightarrow$ direct sensitivity to valence quarks

ж

H1 and ZEUS Combined PDF Fit

Results (iv): CC e[±]p

Charged Current e[±]p

"HERAPDF0.1":

fit quality to the combined HERA-I data for CC e⁺p and e⁻p at high Q²

uncertainties on both data and fit included

difference between e⁺p and e⁻p CC **constrains flavour composition** of proton

[avoids **nuclear corrections** from fixed target data]

 $\sigma_r(X, U)$ April 2008 $\mathbf{\dot{O}}^2 = 300 \; \mathrm{GeV}^2$ 500 GeV^2 1000 GeV^2 1.5 1 0.5 0 1500 GeV^2 2000 GeV² 3000 GeV² 1 0.8 HERA Structure Functions Working Group 0.6 0.4 0.2 0 5000 GeV^2 8000 GeV^2 $15000 \, \mathrm{GeV^2}$ 0.8 0.6 0,4 0.2 0 30000 GeV^2 10-1 1 10-1 1 0.8 х HERA I PDF (prel.) 0.6 HERA I CC e⁺p (prel.) 0.4 HERA I CC ep (prel.) 0.20 10⁻¹ 1

х

H1 and ZEUS Combined PDF Fit

HERA PDF

"HERAPDF0.1": total experimental uncertainty band and model uncertainties

Note: xg(x) and xS(x) scaled down by ×20

cf. previous fits to HERA data

Comparison with H1 and ZEUS published fits to their own HERA-I data

improvement in precision is impressive: originates from data combination

[note that MSTW08 is not yet published:- this is a pre-release]

39

[note that MSTW08 is not yet published:- this is a pre-release]

40

PDFs at starting scale, Q_0^2 =4 GeV²

PDFs at Q²=10 GeV²

PDF uncertainties decrease as Q² increases

PDFs at Q²=100 GeV²

PDF uncertainties decrease as Q² increases

PDFs at Q²=10000 GeV²

scale relevant for LHC:- impressively small uncertainties

HERA PDF: impact

EXAMPLE: W⁺ production at the LHC (study by A. Cooper-Sarkar)

- HERA combined data and PDFs will be crucial input for LHC predictions note, in these plots, uncertainty bands are from experimental sources only
 → step in experimental precision is striking
- \rightarrow model uncertainties will become increasingly important ...

[see also: A. Cooper-Sarkar and E. Perez - talk at the HERA-LHC ws, May'08]

LHAPDF?

HERAPDF0.1 very soon to be released in LHAPDFv5.6.0

will be available in both following forms:

- input parameters + evolution code (".LHpdf"-style)
- PDF values on (x,Q²) grid (".Lhgrid"-style)

Note for users:

- to obtain experimental uncertainties, sum over N_{mem}=1-22
- to obtain experimental+model uncertainties, sum over N_{mem}=1-34 [for technical reasons, model uncerts. only available in ".Lhgrid"-style]

Summary

- HERA combination of inclusive NC and CC DIS data
 - robust, model-independent combination procedure developed
 - H1 and ZEUS experiments cross-calibrate each other
 - \rightarrow significantly **improved** systematics as well as statistics
 - hope to publish combined data within a few months
 [H1 has a couple of HERA I NC datasets still to be published]
- HERA PDF fit to combined data
 - NLO QCD fit to combined HERA-I data
 - uses ep data only \rightarrow no need for nuclear corrections
 - results in a HERA PDF with impressive precision compared to previous HERA analyses and to global fits
 - very soon to be released in LHAPDF

still to come:- use of all HERA-II data in both combination and fits

Results (extra): NC e⁻p

NC e⁻p [at high Q²]: combined data compared to published H1 and ZEUS PDF fits to (their own) data from HERA I $\sigma_r(x,Q^2)$ $Q^2 = 150 \text{ GeV}^2$ $0^2 = 90 \text{ GeV}^2$ $\sim O^2 = 120 \text{ GeV}^2$ $-O^2 = 200 \text{ GeV}^2$ 0 $O^2 = 250 \, \mathrm{GeV}^2$ $O^2 = 400 \text{ GeV}^2$ $O^2 = 500 \text{ GeV}^2$ $O^2 = 300 \text{ GeV}^2$ 1 0 $Q^2 = 650 \, \mathrm{GeV}^2$ $Q^2 = 800 \text{ GeV}^2$ $O^2 = 1000 \text{ GeV}^2$ $Q^2 = 1200 \text{ GeV}^2$ 1 Working Group 0 $Q^2 = 1500 \text{ GeV}^2$ $O^2 = 2000 \text{ GeV}^2$ $O^2 = 3000 \text{ GeV}^2$ $O^2 = 5000 \text{ GeV}^2$ 1 Functions 0 Structure $O^2 = 8000 \text{ GeV}^2$ $O^2 = 12000 \text{ GeV}^2$ $O^2 = 20000 \text{ GeV}^2$ $O^2 = 30000 \text{ GeV}^2$ HERA I (prel.) H1 2000 PDF 1 ZEUS-JETS Ł 0 10 ⁻³ 10^{-2} 10^{-1} 10^{-3} 10^{-2} 10^{-1} 10^{-3} 10^{-2} 10^{-1} 10^{-3} 10^{-2} 10^{-1} x

HERA I e⁻p Neutral Current Scattering - H1 and ZEUS

Results (extra): CC e⁻p

CC e⁻p:

combined data compared to published H1 and ZEUS PDF fits to (their own) data from HERA I $\sigma_{\!r}(x,Q^2)$ $Q^2 = 300 \text{ GeV}^2$ $Q^2 = 500 \text{ GeV}^2$ $Q^2 = 1000 \text{ GeV}^2$ $Q^2 = 1500 \text{ GeV}^2$ 2 1.5 1 HERA Structure Functions Working Group 0.5 $Q^2 = 2000 \text{ GeV}^2$ $Q^2 = 3000 \text{ GeV}^2$ $Q^2 = 8000 \text{ GeV}^2$ $Q^2 = 5000 \text{ GeV}^2$ 1 0.5 10⁻¹ 10^{-1} 0.8 $O^2 = 15000 \text{ GeV}^2$ $O^2 = 30000 \text{ GeV}^2$ х 0.6 HERA I (prel.) H1 2000 PDF 0.4 **ZEUS-JETS** 0.2 0 10⁻¹ 10^{-1} Х

HERA I ep Charged Current Scattering - H1 and ZEUS

Alternative parameterisations (i)

 $xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2}+Fx^{3}+...)$

"H1-style"-parameterisation [as used in H1PDF2k]:

partons parameterised: gluon, U=u+c, D=d+s+b, U = u+c, D = d+s+b sea flavour break-up at Q₀: $s=f_sD$, $c=f_cU$, $A(U)=(1-f_s)/(1-f_c)A(D)$; with $f_s=0.33$, $f_c=0.15$

	A	В	С	D	E	F
gluon	sum rule					
U	lim x->0 u/d->1			sum rule		
D		=B(U)		sum rule		
Ū	=A(U)	=B(U)				
D	=A(D)	=B(U)				

Alternative parameterisations (ii)

 $xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2}+Fx^{3}+...)$

"ZEUS-style"-parameterisation [as used in ZEUS-Jets]:

partons parameterised: gluon, u_v , d_v , sea= u_{sea} + \overline{u} + d_{sea} + \overline{d} +s+s+c+ \overline{c} sea flavour break-up at Q_0 : s=(\overline{u} + \overline{d})/4, charm dynamically generated, \overline{d} - \overline{u} fixed to E866 data

	A	В	С	D	E
gluon	sum rule				0.
u _v	sum rule				
d _v	sum rule	$=B(u_v)$			0.
sea				0.	0.
u-d	parameters from ZEUS-S global fit (2002)			0.	0.

Offset method

HERA PDF fit: 4 correlated procedural uncertainties, arising from the data combination method, are treated with the **Offset method**

Offset Method (in a nutshell)

- 1. perform fit <u>without</u> correlated uncertainties for central fit
- 2. shift measurements to upper limit of one of its systematic uncertainties
- 3. redo fit, record differences of parameters from those of step 1
- 4. go back to 2, shift measurement to lower limit
- 5. go back to 2, repeat 2-4 for next source of systematic (and so on ...)
- 6. add all deviations from central fit in quadrature (positive and negative deviations separately)

Does **not** assume uncertainties are Gaussian distributed. Also tends to give more conservative uncertainty estimates than other methods.

Note: clever ways to do this in practice [Pascaud and Zomer LAL-95-05, Botje hep-ph-0110123] 53

Results (extra): NC e[±]p

NC $e^{\pm}p$ [at low Q²]

"HERAPDF0.1":

fit quality to the combined HERA-I data for NC e⁺p and e⁻p at high Q²

uncertainties on both data and fit included

Model cross-checks

variations outside gluon uncertainty bands (even including model uncertainty)

Model cross-checks

H1-style parameterisation

HERA-I PDF compared to central value of H1-style param. (optimised)

Model cross-checks

ZEUS-style parameterisation

HERA-I PDF compared to central value of ZEUS-style param. (optimised)

"straight" vs. "humpy" gluon

Resolution of an old discrepancy: issue: H1 fits always produced a "humpy" shaped gluon, ZEUS did not

explanation: if a non-zero D-parameter used for the gluon, two minima are found (for any of the parameterisations): **"straight"** and **"humpy"** solutions

"straight" gluon solution favoured by about 10 X² points [but "humpy" gluon still acceptable!] <u>Opposite</u>: "straight" and "humpy" solutions are compared → results are very consistent

global fits scaled by 1.64485 [NB. HERA PDF includes exp. and model uncertainties]

global fits scaled by 1.64485 [NB. HERA PDF includes exp. and model uncertainties]

HERA PDF: checks

Same parameterisation and assumptions in both fits

HERA PDF: checks

Comparison of uncertainties for different treatments

HERA PDF: checks

PDF uncertainties (experimental only) from different parameterisations: HERAPDF0.1 (left), H1-style (centre), ZEUS-style (right)

HERA and PDFs: a rough guide

