Color Glass Condensate and the relation to HERA physics

Edmond Iancu IPhT Saclay & CNRS

Ringberg Workshop New Trends in HERA Physics 2008, October 5-10, 2008, Ringberg Castle, Tegernsee

CGC and the relation to HERA physics - p. 1

Introduction: What is CGC ?

lr	ntr	ос	lu	cti	ioi	n	

- Motivation
- Gluon evolution at small x
- AdS/CFT
- CGC & Geometric scaling
- Some consequences for HERA
- Backup

- The ultimate form of hadronic matter at high energy
 - "parton saturation" (maximal occupation numbers)
- A firm prediction of first—principle calculations
 - weak coupling (perturbative QCD)
 - strong coupling (AdS/CFT for $\mathcal{N} = 4$ SYM)
- Interesting conceptual aspects
 - high energy limit of scattering amplitudes
 - multiple scattering, saturation, unitarity
 - relation to modern problems in statistical physics
- Interesting consequences for the phenomenology
 - rapid growth of the gluon distribution (HERA)
 - geometric scaling (HERA)
 - particle production in pA and AA collisions (RHIC)
- Decisive tests are coming soon, at LHC !

Motivation: Gluons at HERA

\triangleright The gluon distribution rises very fast at small $x \mid (\sim 1/x^{\lambda})$

Introduction

Gluon evolution at small x

CGC & Geometric scaling

Some consequences for HERA

Motivation

AdS/CFT

Backup

 $xG(x,Q^2) \approx$ # of gluons with transverse size $\Delta x_{\perp} \sim 1/Q$ and $k_z = xP$

Motivation: High density = Weak Coupling

High-energy evolution : An evolution towards increasing density.
 High density partonic matter is weakly coupled !

(E)

Motivation: High density = Non-linear

(A)

▷ A challenging problem though !

High density \implies weak coupling but strong non–linear effects

Gluon evolution at small \boldsymbol{x}

Introduction

Motivation

Gluon evolution at small x

Small-x evolution

BFKL

- Saturation momentum
- Dipole frame
- BFKL equation
- Non–linear evolution
- Non–linear evolution

AdS/CFT

CGC & Geometric scaling

Some consequences for HERA

Backup

The 'infrared sensitivity' of bremsstrahlung favors the emission of 'soft' (= small-x) gluons

$$d\mathcal{P} \propto \alpha_s \frac{dk_z}{k_z} = \alpha_s \frac{dx}{x} \equiv \alpha_s dY$$
$$Y \equiv \ln \frac{1}{x} \sim \ln s \implies dY = \frac{dx}{x} : \text{ "rapidity"}$$

A probability of $\mathcal{O}(\alpha_s)$ to emit one gluon per unit rapidity.

Gluon evolution at small \boldsymbol{x}

BFKL evolution

The blowing-up gluon distribution

Motivation

Gluon evolution at small x

Small-x evolution

● BFKL

- Saturation momentum
- Dipole frame
- BFKL equation
- Non–linear evolution
- Non–linear evolution

AdS/CFT

CGC & Geometric scaling

Some consequences for HERA

Backup

$$xG(x,Q^2) \propto \sum_{n} \frac{1}{n!} \left(\alpha_s \ln \frac{1}{x}\right)^n \sim e^{\omega \alpha_s Y}$$
$$Y \equiv \ln(1/x) \sim \ln s : \text{ "rapidity"}$$

"BFKL resummation" (Balitsky, Fadin, Kuraev, Lipatov, 75–78)

Conceptual difficulties in the high energy limit

Onset of non–linear dynamics

The gluon occupation number (or 'packing factor') :

$$n(x,k_{\perp},b_{\perp}) \equiv \frac{\mathrm{d}N}{\mathrm{d}Y\mathrm{d}^{2}k_{\perp}\mathrm{d}^{2}b_{\perp}} \sim \frac{1}{Q^{2}} \times \frac{xG(x,Q^{2})}{\pi R^{2}}$$

$$n \sim \langle A^i A^i \rangle$$
: when $n \sim 1/\alpha_s \iff A^i_a \sim 1/g$

Introduction

Motivation

Gluon evolution at small x

Small-x evolution

●BFKL

- Saturation momentum
- Dipole frame
- BFKL equation
- Non–linear evolution
- Non–linear evolution

AdS/CFT

CGC & Geometric scaling

Some consequences for HERA

Backup

The Saturation Momentum

The gluons must be numerous enough (small x) and large enough (low Q^2) to strongly overlap with each other.

Introduction

Motivation

- Gluon evolution at small x
- Small-x evolution

BFKL

Saturation momentum

Dipole frame

BFKL equation

Non–linear evolution

Non–linear evolution

AdS/CFT

CGC & Geometric scaling

Some consequences for HERA

Backup

Dipole factorization for DIS

• At small-x, the struck quark is typically radiated off

- Lorentz boost to the 'dipole frame'
 - γ^* fluctuates into a $q\bar{q}$ pair which then scatters off the proton.
- The proton still carries most of the total energy !

œ

Dipole factorization for DIS

$$\sigma_{\gamma^* p}(x, Q^2) = \int_0^1 \mathrm{d}z \int \mathrm{d}^2 r \, |\Psi_{\gamma}(z, r; Q^2)|^2 \, \sigma_{\mathrm{dipole}}(x, r)$$

$$\sigma_{\rm dipole}(x,r) = 2 \int d^2b T(x,r,b)$$

T = 1 - S : The dipole-proton scattering amplitude
Unitarity bound: T ≤ 1 (T = 1 : 'black disk limit')

BFKL evolution: Unitarity violation

The 'last' gluon at small x can be emitted off any of the 'fast' gluons with x' > x radiated in the previous steps :

Dipole forward scattering amplitude: T ~ α_sn
 Unitarity bound (T ≤ 1) is eventually violated by BFKL !

Motivation

Gluon evolution at small x

(A)

- Small-x evolution
- BFKL
- Saturation momentum
- Dipole frame
- BFKL equation
- Non–linear evolution
- Non–linear evolution

AdS/CFT

CGC & Geometric scaling

Some consequences for HERA

Backup

(\mathcal{A})

BFKL evolution: Infrared diffusion

The gluon emission vertex is non-local in transverse space:

$$\partial_Y n(\rho, Y) = \alpha_s n + \alpha_s \partial_\rho^2 n$$

 \implies Diffusion in $ho \equiv \ln k_{\perp}^2 \sim \ln Q^2$

Gluon evolution at small x

Small-x evolution

• BFKL

Introduction

Motivation

Saturation momentum

Dipole frame

BFKL equation

Non–linear evolution

Non–linear evolution

AdS/CFT

CGC & Geometric scaling

Some consequences for HERA

Backup

Non–linear evolution: Saturation

High density: recombination processes leading to saturation

Motivation

Gluon evolution at small x

Small-x evolution

- BFKL
- Saturation momentum
- Dipole frame
- BFKL equation
- Non–linear evolution
- Non–linear evolution

AdS/CFT

CGC & Geometric scaling

Some consequences for HERA

Backup

• Unitarity restoration & Hard momentum scale ($Q_s(Y)$)

Non–linear evolution: Saturation

 $\partial_Y n(\rho, Y) = \alpha_s \partial_\rho^2 n + \alpha_s n - \alpha_s^2 n^2$

- Cartoon version of BK (Balitsky–Kovchegov) equation (99)
- Mean field (large–N_c) approx. to JIMWLK equation (CGC) (Jalilian-Marian, E.I., McLerran, Weigert, Leonidov, and Kovner, 97–00)
- Derived to leading-order in perturbative QCD

DIS at strong coupling

	(Polchinki, Strassler, 02; Hatta, E.I., Mueller, 07) see talk by R. Peschanski					
	• $\lambda \equiv g^2 N_c \gg 1$ with $g^2 \ll 1 \Longrightarrow \text{AdS/CFT correspondence}$					
Introduction Motivation	• $\mathcal{N} = 4$ SYM \iff classical gravity in the $AdS_5 \times S^5$					
Gluon evolution at small <i>x</i> AdS/CFT • Strong coupling • Saturation line	Parton branching at strong coupling : No reason to favour special corners of phase-space !					
CGC & Geometric scaling	Y = In 1/x ♠					
Some consequences for HERA Backup	p p/2 p/4 p/8	Total absorption Parton Saturation $\ln Q_s^2(Y) = 2 Y$ No partons Quasi-elastic scattering				
	All partons have branched down to s	mall values of x^{\dagger}				

(\mathcal{C})

Saturation line: weak vs. strong coupling

- No 'leading-twist' (no pdf's !) at $Q^2 > Q_s^2(x)$ all partons lie within the CGC with occupancy $n \sim O(1)$
- Saturation exponent : $Q_s^2(x) \propto 1/x^{\lambda_s} \equiv \mathrm{e}^{\lambda_s Y}$
 - weak coupling : $\lambda_s \approx 0.4 g^2 N_c$ (LO BFKL Pomeron)
 - strong coupling : $\lambda_s = 1$ (graviton)

The Color Glass Condensate

(McLerran, Venugopalan, 1994; E.I., Leonidov, McLerran, 2000)

An effective theory for the evolution towards saturation

Backup

Introduction

Motivation

AdS/CFT

● CGC

Gluon evolution at small x

CGC & Geometric scaling

Geometric scaling at HERA

Some consequences for HERA

DIS off the CGC
Saturation front
Gluon distribution

Traveling wave
 Geometric scaling

Osat at NLO

 (\mathbf{A})

- Small–*x* gluons: Classical color fields radiated by fast color sources $(x' \gg x)$ 'frozen' in some random configuration ρ_a
- $W_Y[\rho]$: Probability distribution for the color charge density
- Functional evolution equation for $W_Y[\rho]$: JIMWLK

Deep Inelastic Scattering off the CGC

Backup

Some consequences for HERA

 $Dipole r + \frac{1}{2}$

T(r)[ρ] : scattering off a given configuration ρ of the color sources (multiple scattering in the eikonal approximation)

• Average over ρ with weight function $W_Y[\rho]$ (glass)

$$\langle T(r) \rangle_Y = \int \mathcal{D}[\rho] W_Y[\rho] T(r)[\rho]$$

Saturation momentum

(A)

• The position $\rho_s(Y)$ of the front \implies saturation momentum $\mathsf{BK} \implies \rho_s(Y) \equiv \ln Q_s^2(Y) \approx \lambda Y$ with $\lambda \approx 4.88 \bar{\alpha}_s \sim 1$

(A)

Introduction

Motivation

AdS/CFT

• CGC

DIS off the CGC Saturation front

Traveling wave

Qsat at NLO

Backup

Gluon evolution at small x

Gluon occupation number

A similar front holds for the 'unintegrated gluon distribution'

$$xG(x,Q^2) = \int d^2b \int^Q dk \, k \, n(x,k)$$

The typical transverse momentum of the gluons is $\sim Q_s(Y)$

BK equation: The traveling wave

(A)

Geometric scaling

(A)

• $\rho - \rho_s(Y) = const$: A line of constant gluon occupancy \implies physics must be invariant along any such a line !

Saturation makes itself felt in the dilute regime $(Q^2 > Q_s^2)$

Geometric scaling

Strictly true only within a finite 'scaling window' above Q_s , which extends with Y: $\ln Q_q^2(Y) - \ln Q_s^2(Y) \propto \sqrt{\alpha_s Y}$

Geometric Scaling at HERA

Geometric Scaling at HERA (2)

(Marquet and Schoeffel 2006)

œ

Saturation exponent at NLO

D.N. Triantafyllopoulos, 2002

- Introduction
- Motivation
- Gluon evolution at small x
- AdS/CFT
- CGC & Geometric scaling
- Some consequences for HERA
- Saturation models
- GBWCGC fit to F2
- F2c
- F2D3
- F2D3
- F2 Regge vs Sat
- DIS Diffraction
- Soft diffraction (?)
 Semi-Hard diffraction
- Backup

• "Saturation models" \equiv QCD-inspired models for σ_{dipole} involving saturation and a reasonable # of free parameters

- The parameters are fixed by fits to the F_2 data alone !
- Satisfactory description of the ensemble of HERA data at $x \le 0.01$
 - All other observables (F_2^D , F_L , F_2^c , ρ , J/ψ , DVCS, ...) emerge as 'predictions'.
- Important qualitative predictions of the theory which appear to be consistent with the data.

geometric scaling, the transition towards low Q^2 for F_2 , a nearly constant $\sigma_{\text{diff}}/\sigma_{\text{tot}}$ ratio ...

■ A similar success for the relevant data at RHIC high-p_⊥ suppression in forward d-Au collisions ('R_{pA}')

Saturation models

The Golec-Biernat and Wüsthoff model (1999)

$$\sigma_{\text{dipole}}^{\text{GBW}}(x,r) = 2\pi R^2 \Big(1 - e^{-r^2 Q_s^2(x)} \Big), \quad Q_s^2(x) = (x_0/x)^{\lambda} \text{GeV}^2$$

- Good fit to the early HERA data with only 3 parameters
- Exact 'geometric scaling' built in : $\sigma^{\text{GBW}}(r^2Q_s^2(x))$
- More sophisticated models (pQCD evolution, geometric scaling violations)
 - DGLAP-like (also with b dependence) Bartels, Golec-Biernat, Kowalski (02), Kowalski, Teaney (03), Kowalski, Motyka, Watt (06)
 - CGC model (BK eq.) E.I., Itakura, Munier (03): 3 light quarks
 - Improvements of CGC model: heavy quarks, b-dependence Kowalski, Motyka, Watt (06), Soyez (07)
 - FS04 saturation model Forshaw, Shaw (04)

- CGC & Geometric scaling
- Some consequences for HERA

Gluon evolution at small x

- Saturation models
- GBW • CGC fit to F2

Introduction

Motivation

AdS/CFT

- F2c
- F2D3
- F2D3
- F2 Regge vs Sat
- DIS Diffraction
- Soft diffraction (?)
- Semi-Hard diffraction

Backup

A CGC fit to F_2 (G. Soyez, 2007)

 $x \le 10^{-2}$, $Q^2 \le 150 \,\text{GeV}^2$ (281 data points, ZEUS & H1)

$\textbf{CO} \qquad \textbf{A CGC fit to } F_2 \text{ (G. Soyez, 2007)}$

A CGC fit to F_2^c

Forshaw, Sandapen and Shaw (06)

Introduction

- N /	otiv	ntic	n
111	Ouv	auc	л

-				
Gluon	evolution	at	small	x

AdS/CFT

CGC & Geometric scaling

Some consequences for HERA

Saturation models

• GBW

• CGC fit to F2

●F2c

• F2D3

• F2D3

F2 Regge vs Sat

DIS Diffraction

• Soft diffraction (?)

Semi-Hard diffraction

Backup

Saturation fits for Diffraction

Forshaw, Sandapen and Shaw (06) $Low Q^2$

Saturation fits for Diffraction

Forshaw, Sandapen and Shaw (06) High Q^2

Gluon evolution at small x

AdS/CFT

CGC & Geometric scaling

Some consequences for HERA

Saturation models

• GBW

• CGC fit to F2

• F2c

• F2D3

● F2D3

F2 Regge vs Sat

DIS Diffraction

Soft diffraction (?)

Semi-Hard diffraction

Backup

Saturation vs. Regge fits for F_2

Forshaw and Shaw (04) Relatively low Q^2

Backup

Left: Regge fits (a sum of 'soft' + 'hard' Pomerons)

- Right: 2 saturation fits (FS04 and CGC)
- Data appear to prefer saturation !

DIS Diffraction

Motivation

Gluon evolution at small x

AdS/CFT

CGC & Geometric scaling

Some consequences for HERA

- Saturation models
- GBW
- CGC fit to F2
- F2c
- F2D3
- F2D3
- F2 Regge vs Sat
- DIS Diffraction
- Soft diffraction (?)

Semi-Hard diffraction

Backup

An ideal laboratory to study saturation/unitarity effects

- sensitive to relatively large dipole sizes
- sensitive to theoretical models (or prejudices)

DIS Diffraction

Motivation

```
Gluon evolution at small x
```

AdS/CFT

CGC & Geometric scaling

Some consequences for HERA

- Saturation models
- GBW
- CGC fit to F2
- F2c
- F2D3
- F2D3
- F2 Regge vs Sat
- DIS Diffraction
- Soft diffraction (?)

Semi-Hard diffraction

Backup

An ideal laboratory to study saturation/unitarity effects

- sensitive to relatively large dipole sizes
- sensitive to theoretical models (or prejudices)
- Original prejudice: "Even for large Q^2 , diffraction is soft"

 $\sigma_{
m diff} \propto x^{-2(lpha_{
m P}-1)}$ and hence

$$rac{\sigma_{
m diff}}{\sigma_{
m tot}} \sim x^{-(lpha_{
m P}-1)}$$
 at small x

Diffractive over inclusive ratio at HERA

Golec-Biernat, Wüsthoff (99); Bartels, Golec-Biernat & Kowalski (02)

Ringberg Workshop New Trends in HERA Physics 2008, October 5-10, 2008, Ringberg Castle, Tegernsee

CGC and the relation to HERA physics - p. 35

Diffractive dissociation of the virtual photon

Introduction

Motivation

Gluon evolution at small x

AdS/CFT

CGC & Geometric scaling

Some consequences for HERA

Saturation models

• GBW

• CGC fit to F2

• F2c

• F2D3

- F2D3
- F2 Regge vs Sat

DIS Diffraction

Soft diffraction (?)

Semi-Hard diffraction

Backup

$$\frac{\mathrm{d}\sigma_{\mathrm{diff}}}{\mathrm{d}^2 b} = \int \mathrm{d}z \,\mathrm{d}^2 \boldsymbol{r} \,|\Psi_{\gamma}(z,r;Q)|^2 \,\left(T(r,Y)\right)^2$$

• The photon wavefunction favors small dipoles ($r \sim 1/Q$)

$$\frac{\mathrm{d}\sigma_{\mathrm{diff}}}{\mathrm{d}^2 b} \sim \frac{1}{Q^2} \int_{1/Q^2}^{\infty} \frac{\mathrm{d}r^2}{r^4} \left(T(r, Y) \right)^2$$

The dipole amplitude favors relatively large dipoles :

 $T(r) \propto r^2$ (single scattering)

• "The integral is dominated by large, non-perturbative, dipoles with size $r \sim 1/\Lambda_{\rm QCD}$, hence the soft pomeron ! "

Hardening the diffraction

Introduction Motivation Gluon evolution at small *x* AdS/CFT CGC & Geometric scaling Some consequences for HERA

- Saturation models
- GBWCGC fit to F2
- ●F2c
- F2D3
- F2D3
- F2 Regge vs Sat
- DIS Diffraction
- Soft diffraction (?)
 Semi-Hard diffraction

Backup

At sufficiently high energy, gluon saturation cuts off the large dipoles already on the 'semi-hard' scale $1/Q_s$!

$$\frac{\mathrm{d}\sigma_{\mathrm{diff}}}{\mathrm{d}^2 b} \sim \frac{1}{Q^2} \int_{1/Q^2}^{1/Q_s^2} \frac{\mathrm{d}r^2}{r^4} \left(r^2 Q_s^2(x) \right)^2 \sim \frac{Q_s^2(x)}{Q^2} \propto x^{-\lambda}$$

- σ_{diff} is dominated by dipole sizes $r \sim 1/Q_s(x)$!
- $\sigma_{\text{diff}} \propto x^{-\lambda}$: single, hard pomeron increase with 1/x (instead of double soft !)
- $\sigma_{\rm diff} / \sigma_{\rm tot} \approx {\rm constant} ! ~ \checkmark$
- Semi-hard diffraction' ... at intermediate energies !

Introduction

Motivation

AdS/CFT

Backup

Fluctuations

Pomeron loops

Front diffusion
 Dispersion: FC

Dispersion: RC

Single scatteringMultiple scattering

No Jets

Gluon evolution at small x

CGC & Geometric scaling

Some consequences for HERA

Stochastic aspects of high-energy QCD

- Classical fields (JIMWLK) : no gluon-number fluctuations
- Gluons in the same cascade are correlated with each other
- Saturation & multiple scattering could probe the correlations

$$\partial_t n(x,t) = \underbrace{\partial_x^2 n(x,t)}_{\text{diffusion}} + \underbrace{\alpha n(x,t)}_{\text{growth}} \underbrace{-\beta n^2(x,t)}_{\text{recombination}}$$

Introduction

Motivation

AdS/CFT

Backup Fluctuations

Pomeron loops

Front diffusion Dispersion: FC Dispersion: RC Single scattering Multiple scattering

No Jets

Gluon evolution at small x

DIS with Pomeron loops

- Statistical physics: The effects of fluctuations are dramatic ! (The front is pulled by the dynamics in its dilute tail)
- Important consequences for high–energy QCD (Mueller, Shoshi; E.I., Mueller, Munier; E.I., D. Triantafyllopoulos, 2004)

Front diffusion through fluctuations

The stochastic evolution generates un ensemble of fronts which differ by their saturation momentum $\rho_s \equiv \ln Q_s^2$

$$\langle \rho_s(Y) \rangle = \lambda Y, \qquad \langle \rho_s^2 \rangle - \langle \rho_s \rangle^2 = DY, \qquad D \sim \frac{1}{\ln^3(1/\alpha_s)}$$

(A)

Introduction

Motivation

AdS/CFT

Backup

Fluctuations

Pomeron loopsFront diffusion

Dispersion: FCDispersion: RC

Single scatteringMultiple scattering

No Jets

Gluon evolution at small x

CGC & Geometric scaling

Some consequences for HERA

-1

œ

Dispersion: Fixed coupling

• $\sigma^2(Y) \simeq D\bar{\alpha}_s Y$ with $D \sim \mathcal{O}(1)$

• $\sigma^2(Y) \gtrsim 1 \Longrightarrow$ a totally new picture : 'diffusive scaling'

50

Dispersion: Running coupling

• The dispersion keeps rising with $Y \dots$

Single scattering: 2–gluon exchange

The dipole scatters off the gluon field in the target

Introduction

Motivation

Gluon evolution at small x

AdS/CFT

CGC & Geometric scaling

Some consequences for HERA

Backup

Fluctuations

Pomeron loops

Front diffusion

Dispersion: FC

Dispersion: RC

Single scattering

Multiple scattering

No Jets

 $V(\mathbf{r}) \simeq gt^a \mathbf{r} \cdot \mathbf{E}_a \implies T(x, r, b) \propto g^2 r^2 \langle \mathbf{E}_a \cdot \mathbf{E}_a \rangle_x$

Weak scattering ($T \ll 1$) \iff Low gluon occupation ($n \ll 1/\alpha_s$)

Ringberg Workshop New Trends in HERA Physics 2008, October 5-10, 2008, Ringberg Castle, Tegernsee

Introduction

Motivation

AdS/CFT

Backup
Fluctuations
Pomeron loops
Front diffusion
Dispersion: FC

Dispersion: RC
Single scattering
Multiple scattering

No Jets

Gluon evolution at small x

CGC & Geometric scaling

Some consequences for HERA

Multiple scattering: Unitarization

- When decreasing x at fixed r: $xG(x, 1/r^2) \sim 1/x^{\lambda}$
 - \implies Unitarity is eventually violated ! ($T \gtrsim 1$)
- Multiple scattering becomes important and restores unitarity

No forward jets !

No large-x partons ⇒ no forward/backward jets in a hadron-hadron collision at strong coupling

'The Nightmare of CMS'

$$|\eta| \lesssim \eta_{\max}(Q) = \ln \frac{\sqrt{s}}{Q} - \ln \frac{1}{x_s(Q)}, \qquad x_s(Q) \sim \frac{\Lambda^2}{Q^2 N_c^2} \ll 1$$