Prospects for Higgs boson physics beyond the Standard Model at the Large Hadron Collider (LHC) Seminar: Physics at the Large Hadron Collider

Verena Walbrecht

Technische Universität München

8th December 2014

Contents

Introduction

Additional electroweak singlet

 $H \rightarrow ZZ \rightarrow 4I$

Two Higgs doublet Model (2HDM)

 $\phi \rightarrow \mu \mu$ $A \rightarrow Zh \rightarrow Ilb\bar{b}$ $H \rightarrow ZZ \rightarrow 4l$ Indirect search

Summary

- In the Standard model:
 - Higgs sector is minimal
 - Include only one complex doublet: one CP-even Higgs boson
- 2012: Discovery of a Higgs-like boson with m_A =125.5 GeV and J^P = 0⁺
- Combined coupling fits of the measured production and decay rates: no significant deviation from SM

- Important question: Higgs sector minimal or extended, as predict in many beyond-SM theories
- Upgrade of LHC: better study of the higgs sector and search for new physics
- 2011/12: 25 ${
 m fb}^{-1}$ at $\sqrt{s} =$ 7-8 TeV
- till 2022: 300 ${\rm fb}^{-1}$ at $\sqrt{s} = 13-14 \,{\rm TeV}$
- till 2030: 3000 fb⁻¹
- Current studies:
 - What can be done with this Data ?
 - Which new physics can be observed ?

Technische Universität Müncher

- Indirect search:
 - Measuring the signal strength in different channels
 - Combined coupling fits: determine couplings of higgs to fermions and vector bosons
 - Search for deviation from SM
 - Channels:
 - $H \to \gamma \gamma$ • $H \to Z\gamma, Z \to II$ • $H \to \tau^+ \tau^-$ • $H \to ZZ^* \to 4I$ • $H \to WW^* \to l\nu l\nu$ • $H \to \mu\mu$
- Direct search:
 - Search for new particles in different decay channels:
 - $H, A \rightarrow \mu\mu$ $A \rightarrow Zh \rightarrow Ilb\bar{b}$ $H \rightarrow ZZ \rightarrow 4l$

Additional electroweak singlet

- Simplest extension of the SM Higgs sector: Addition of an electroweak singlet
- Both: Non-zero vacuum expectation values
- Spontaneous symmetry breaking \Rightarrow two CP-even Higgs bosons: h, H
 - Non-degenerate
 - Coupling to fermions and vector bosons similar to the SM Higgs boson
 - Strength reduced by a scale factor: κ_h , κ_H , with $\kappa_h^2 + \kappa_H^2 = 1$
- For the lighter Higgs boson *h* (identical decay modes SM Higgs):

$$\sigma_h = \kappa_h^2 \cdot \sigma_{h,SM} , \qquad \Gamma_h = \kappa_h^2 \cdot \Gamma_{h,SM} ,$$

$$BR_{h,i} = BR_{SM,i}$$

• For *H*: new decay modes possible $(H \rightarrow hh)$:

$$\sigma_{H} = \kappa_{H}^{2} \cdot \sigma_{H,SM} , \qquad \Gamma_{H} = \frac{\kappa_{H}^{2}}{1 - BR_{H,new}} \cdot \Gamma_{H,SM} ,$$
$$BR_{H,i} = (1 - BR_{H,new}) \cdot BR_{H,SM,i}$$

- Indirect searches for deviations in the fit of the Higgs boson couplings
- Expected 95 % CL upper limit on κ_H at $\sqrt{s} = 14$ TeV:

Coupling	$300 \ {\rm fb}^{-1}$		3000 fb^{-1}	
	All unc.	No theory unc.	All unc.	No theory unc.
κ_H	0.35	0.31	0.31	0.25

$\bigoplus_{\text{CMS PAS FTR-13-024}} H \rightarrow ZZ \rightarrow 4I \text{ (CMS)}$

- Selection:
 - Electron p_T >10 GeV and muon p_T >5 GeV, $|\eta| < 2.5$
 - Lepton isolation
 - Ensure trigger efficiency: Leading lepton with $p_T > 30 \text{ GeV}$ or leading with $p_T > 20 \text{ GeV}$ and sub-leading with $p_T > 10 \text{ GeV}$
- Z candidates:
 - Same flavor, opposite sign
 - $60 < m_{||} < 100 {\rm GeV}$
 - Require two candidates
 - One with 80 $< m_{\rm H} < 100 {\rm GeV}$
- \bullet One $H \rightarrow ZZ$ candidate with $m_{ZZ} > \! 150 \, {\rm GeV}$

Background: B, Bj, Bjj-vbf, BB, BBB tj, tt, tB, ttB

- SM Higgs sector is extended by an additional doublet
- Vacuum expectation values: $v_1 = \langle \phi_1 \rangle$ and $v_2 = \langle \phi_2 \rangle$: $v_1^2 + v_2^2 = v^2 = (246 \text{GeV})^2$
- Predict five Higgs bosons: two neutral CP-even bosons h and H, two charges bosons H[±] and one CP-odd boson A
- Parameters (no CP violation):
 - m_h , m_H , m_A and $m_{H^{\pm}}$
 - $\tan\beta = v_2/v_1$
 - $\bullet\,$ mixing angle α of the two neutral CP-even Higgs states
 - Scalar coupling: λ_5 , λ_6 und λ_7

(Minimal Supersymmetric Standard Model (MSSM) $\lambda_5 = \lambda_6 = \lambda_7 = 0$)

• Couplings to the light Higgs boson h:

Coupling strength	Type I	Type II	Type III	Type IV
κ_V	$\sin(eta-lpha)$	$\sin(eta-lpha)$	$\sin(eta-lpha)$	$\sin(eta-lpha)$
κ_u	$\cos(lpha)/\sin(eta)$	$\cos(lpha)/\sin(eta)$	$\cos(lpha)/\sin(eta)$	$\cos(lpha)/\sin(eta)$
Кd	$\cos(lpha)/\sin(eta)$	$-\sin(lpha)/\cos(eta)$	$\cos(lpha)/\sin(eta)$	$-\sin(lpha)/\cos(eta)$
κı	$\cos(\alpha)/\sin(\beta)$	$-\sin(lpha)/\cos(eta)$	$-\sin(lpha)/\cos(eta)$	$-\cos(lpha)/\sin(eta)$

Туре	Name	Doublet ϕ_1	Doublet ϕ_2
I	fermiophobic		00
11	MSSM-like	0	U
111	lepton-specific		0
IV	flipped	d	0

- Higgs bosons (A, H) produced by gluon fusion and/or association with b-quark pair
- Selection: Event contains exactly two muons (opposite charge)
- Two categories:
 - b-tag: At least one b-tagged jet
 - b-veto: No b-tagged jet
- Background:
 - $Z/\gamma^* + \text{ jets}$
 - $Z/\gamma^* + bb$
 - tī

• Di-muon invariant mass distribution:

• Expected significance:

$\bigotimes A \to Zh \to IIb\bar{b} \text{ (ATLAS)}$ ATLAS-PHYS-PUB-2013-016

Selection:

- Electrons: $E_T > 25 \, {\rm GeV}$ and $|\eta| < 2.57$ (without $1.37 < |\eta| < 1.52$)
- Muons: $p_T > 25 \, {
 m GeV}$ and $|\eta| < 2.5$
- At least two with same flavor and opposite sign (80 $< m_{\rm H} <$ 100 GeV)
- At least 2 b-jets (90 $< m_{bb} <$ 140 GeV)
- $1.4 0.001 m_A < \Delta R(bb) < 1.8 0.001 m_A$
- Clean signature and fully reconstructible m_A

$$m_A^{rec} = m_{IIbb} - m_{II} - m_{bb} + m_Z^0 + m_h^0$$

Background:

++

Verena Walbrecht | Prospects for Higgs boson physics beyond the Standard Model at the Large Hadron Collider (LHC)

Technische Universität München

$\bigotimes A \to Zh \to IIb\bar{b} \text{ (ATLAS)}$ ATLAS-PHYS-PUB-2013-016

• Limits on the 2HDM parameter space:

$\bigoplus_{\text{CMS PAS FTR-13-024}} H \rightarrow ZZ \rightarrow 4I \text{ (CMS)}$

- This decay channel also possible in the 2HDM
- Limits on the 2HDM parameter space:

• Indirect measurement possible by setting constrains on the parameter:

Summery

- Discovery of the Higgs boson in 2012
- Question: Higgs sector minimal?
- New physics is observable in direct and indirect measurements
- Studies of expected limits on an additional electroweak singlet and electroweak doublet has been done
- New data at 13-14 TeV allow for the exploration of a wide range of Higgs sectors beyond the Standard Model, both via direct searches for new Higgs bosons and indirectly via fit of the Higgs boson couplings to the measured data

• Expected upper limits ($200 < m_H < 1000 \text{ GeV}$):

$$\frac{ggF}{3000 \text{ fb}^{-1}} \sim 0.01 - 0.1 \text{ fb} \sim 0.008 - 0.04 \text{ fb}$$

$\bigotimes A \to Zh \to IIb\bar{b} \text{ (CMS)}$ CMS PAS FTR-13-024

- Same selections for Leptons as for $H \rightarrow ZZ$
 - One Z candidate (opposite sign and same flavor lepton pair with $60 < m_{||} < 100 {
 m GeV}$)
- Selections for jets:
 - p_T >10 GeV and $|\eta|$ > 2.5
 - One h candidate with 90 $< m_{bb} < \! 150\,{\rm GeV}$
- $|\Delta \phi(l_1 l_2)| < 1.9$ rad
- $p_T(Z) > 40 \text{ GeV}$
- $0.4 < p_T(Z)/p_T(h) < 2.75$

$\bigotimes A \to Zh \to IIb\bar{b} \text{ (CMS)}$ CMS PAS FTR-13-024

• Limits on the 2HDM parameter space:

Vector-Boson-Scattering

CMS PAS FTR-13-006 and ATLAS-PHYS-PUB-2013-006

- Technische Universität München
- $\bullet\,$ Electroweak (EW) theory is non-abelian $\rightarrow\,$ self-interaction of gauge bosons
- Scattering of vector bosons: Triple and quartic boson couplings (TGC and QGC)

- Each of these processes violates unitarity at high energies
- In Standard Model (SM): Higgs maintain unitarity \rightarrow probe SM nature of EWSB
- Scattering topology: Sensitive to new physics in EWSB sector (anomalous QGC)
- \bullet Addition to the scattering process \rightarrow change the cross section

Vector-Boson-Scattering CMS PAS FTR-13-006 and ATLAS-PHYS-PUB-2013-006

- In pp-collisions: VBS in $pp \rightarrow VVii$
- Experimental signature: two jets with large pseudorapidity difference plus leptons (from W and Z decays)
- SM Lagrangian: dimension-4 operators
- New physics: higher dimension operators in an effective field theory
- Multi-boson production: dimension-6 and dimension-8 operators (contain Higgs) and/or gauge boson fields)
- New physics which is $SU(2)_L \times U(1)_Y$ gauge invariant and CP-even operators

$\bigotimes ZZjj \rightarrow IIIIjj (ATLAS)$ ATLAS-PHYS-PUP-2013-006

- Small cross section
- Final state: Fully reconstructible
- Operator (6-dimensional):

$$\mathcal{L}_{\phi W} = \frac{c_{\phi W}}{\Lambda^2} \operatorname{Tr}(W^{\mu \nu} W_{\mu \nu}) \phi^{\dagger} \phi$$

where Λ : mass-dimensioned parameter

- Selection:
 - 4 Leptons with $p_T > 25$ GeV, two with opposite sign
 - 1 Lepton over detector threshold
 - 2 jets with $p_T > 50 \text{ GeV}$
 - $m_{jj} > 1 \, {\rm TeV}$

• 5σ discovery potential:

$$\begin{array}{c|c} & 300 \text{ fb}^{-1} & 3000 \text{ fb}^{-1} \\ \hline c_{\phi W}/\Lambda^2 & 34 \text{ TeV}^{-2} & 16 \text{ TeV}^{-2} \end{array}$$

$WZjj \rightarrow I\nu IIjj$ (ATLAS) ATLAS-PHYS-PUP-2013-006

- Larger cross section
- Final state: Reconstruction with neutrino pz
- Operator (8-dimensional):

$$\mathcal{L}_{T,1} = \frac{f_{T1}}{\Lambda^4} \operatorname{Tr}[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta}] \times \operatorname{Tr}[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu}]$$

Selection:

- 3 Leptons with p_T >25 GeV: opposite sign, same flavor pair + additional single lepton
- 1 Lepton over detector threshold
- 2 jets with $p_T > 50 \text{ GeV}$
- $m_{jj} > 1 \, {\rm TeV}$

• 5σ discovery potential:

$$\begin{array}{c|c} & 300 \text{ fb}^{-1} & 3000 \text{ fb}^{-1} \\ \hline f_{T1}/\Lambda^4 & 1.3 \text{ TeV}^{-4} & 0.6 \text{ TeV}^{-4} \end{array}$$

$\bigotimes WZjj \rightarrow I\nu IIjj (CMS)$ CMS PAS FTR-13-006

• Calculated cross sections [fb] (14 TeV *pp*-collision):

	WZ EWK	WZ QCD	ZZ	L_{T_1}
Total	7.7	210	16	3.1
Fiducial	0.69	0.96	0.038	0.57

• Selection:

- 3 Electrons/muons with p_T >20 GeV and $|\eta| < 2.4$: same flavor pair and opposite charge one Z candidate with m_{ll} > 20 GeV no additional lepton with p_T >10 GeV
- 2 jets with $p_T>\!\!50\,\text{GeV}$ and $|\eta|<4.7$ $\Delta\eta_{jj}>4.0$ $m_{jj}>600\,\text{GeV}$
- no overlap: $\Delta R(II') > 0.04$ and $\Delta R(Ij') > 0.4$

$WZjj \rightarrow I \nu IIjj$ (CMS) CMS PAS FTR-13-006

• Anomalous coupling signal for $f_{t_1}/\Lambda^4 = 1.0 \, {\rm TeV}^{-4}$

• Expected sensitivity to aGQC:

Significance	3σ	5σ
SM EWK scattering discovery	$75 { m ~fb}^{-1}$	$185 { m fb}^{-1}$
f_{T1}/Λ^4 at 300 ${ m fb}^{-1}$	$0.8 { m TeV}^{-4}$	$1.0 { m TeV}^{-4}$
f_{T1}/Λ^4 at 3000 ${ m fb}^{-1}$	$0.45 { m TeV}^{-4}$	$0.55 { m TeV}^{-4}$

• Operator (8-dimensional):

$$\mathcal{L}_{T,0} = \frac{f_{S0}}{\Lambda^4} \left[(D_{\mu}\phi)^{\dagger} D_{\nu}\phi \right] \times \left[(D^{\mu}\phi)^{\dagger} D^{n}\nu\phi \right]$$

- Selection:
 - 2 Leptons with $p_T > 25 \text{ GeV}$: same charge
 - 1 Lepton over detector threshold
 - 2 jets with $p_T > 50 \text{ GeV}$
 - $m_{jj} > 1 \, {\rm TeV}$

• 5σ discovery potential:

$$\begin{array}{c|c} & 300 \text{ fb}^{-1} & 3000 \text{ fb}^{-1} \\ \hline f_{50}/\Lambda^4 & 10 \text{ TeV}^{-4} & 4.5 \text{ TeV}^{-4} \end{array}$$

ШŪ

Technische Universität München

 $Z\gamma\gamma$ in dilepton + diphoton channel (ATLAS) ATLAS-PHYS-PUP-2013-006

- Sensitive to BSM triboson contributions
- Operators (8-dimensional):

$$\mathcal{L}_{T,8} = \frac{f_{T8}}{\Lambda^4} B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$
$$\mathcal{L}_{T,9} = \frac{f_{T9}}{\Lambda^4} B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

Selection:

- Lepton and $\gamma:~p_T>\!\!25\,{\rm GeV},~|\eta|<2.0$
- At least one lepton and γ : $p_T > 160 \text{ GeV}$
- $|m_{||} 91 \text{GeV}| < 10 \text{GeV}$
- $\Delta(\gamma, \gamma) > 0.4; \ \Delta(I, \gamma) > 0.4; \ \Delta(I, I) > 0.4;$

 $X \gamma \gamma$ in dilepton plus diphoton channel(ATLAS) ATLAS-PHYS-PUP-2013-006

• 5σ discovery potential:

	$300 \ \mathrm{fb}^{-1}$	$3000 \ {\rm fb}^{-1}$
f_{T8}/Λ^4	$0.9 {\rm TeV}^{-4}$	$0.4 {\rm TeV}^{-4}$
f_{T9}/Λ^4	$2.0 \mathrm{TeV}^{-4}$	$0.7\mathrm{TeV}^{-4}$