Full 3D scan of an AGATA crystal using the PSCS technique

M. Ginsz (PhD), G. Duchêne, F. Didierjean, M.-H. Sigward, M. Filliger

IPHC, Strasbourg, France

Gamma-ray tracking Ge spectrometers

Gamma-Ray Tracking Paradigm

PSCS technique at IPHC

PSCS = Pulse Shape Comparison Scan

IPHC scanning table

> XY positioning $+/-10 \mu \mathrm{~m}$
> Adjustment frame: detector position fine tuning using micrometric screws

$>360^{\circ}$ rotation of the crystal
> Laser alignment reference

Optical module

laser beam

IPHC scanning table

-

IPHC scanning table

Electronics

> 10 TNT2 boards (L. Arnold et al., IEEE TNS 53 (2006)723)
> $100 \mathrm{MHz}, 14$ bits flash ADCs

- Common clock; up to 40 channels sync.
- Mixed mode: energy + samples readout
> USB data transfer

AGATA B type crystal

Scan characteristics

	source	mode	pitch [mm]	timeout [s]	number of points	total time [days]	$\begin{gathered} \text { volume } \\ \text { of raw } \\ \text { data [Go] } \end{gathered}$	info
VERTICAL POSITION								
1	${ }^{137} \mathrm{Cs}$	E	1	100	5520	7.5	260	charge collection analysis
2	${ }^{137} \mathrm{Cs}$	M	2	110	1310	2	1500	PSCS
3	${ }^{137} \mathrm{Cs}$	E	0.2	150	300	0.6	22	check vertical tilt 4
4	${ }^{241} \mathrm{Am}$	E	0.05	60	160	0.1	41	segmentation line analysis
HORIZONTAL POSITION								
5	${ }^{137} \mathrm{Cs}$	M	2	110	1840	2.7	1400	PSCS 0°
6	${ }^{137} \mathrm{Cs}$	M	2	120	1840	3	1500	PSCS 90°
7	${ }^{137} \mathrm{Cs}$	E	0.2	150	400	0.8	25	PSCS check lateral tilt

$\Rightarrow E=$ energy mode
$\Rightarrow M=$ Mixte mode

2D ${ }^{137}$ Cs scans

Photopeak efficiency: Core signal

Front scan 1mm pitch

Lateral scan 2 mm pitch

2D ${ }^{137}$ Cs scans

Photopeak efficiency: Segment signals
Front scan 1mm pitch

Slice 1

Slice 4

Slice 2

Slice 5

Slice 3

Slice 6

Front scan 2 mm pitch

Slice 1

Slice 4

Slice 2

Slice 5

Slice 3

Slice 6

Ucioder 1Y-LJ, LUIJ

2D scans

Crystal lattice

 anisotropy$>{ }^{137} \mathrm{Cs}$
$>2 \mathrm{~mm}$ pitch
$>$ Slowest axis in corner of segment A

Ringberg Symposium
October 19-23, 2015

2D scans

Other possibilities

> Image charge asymmetry
> Photopeak shift -> charge trapping
> FWHM
> Charge sharing on segmentation lines
> Li contact thickness 3D scans

Data analysis
> $\quad 50000$ voxels to evaluate by x^{2}
> Each voxel: 15000 (A) x15000 (B) supertraces to evaluate

- Each supertrace: 4400 samples of 2 bytes
> 100 peta bytes of data to compare
~170 days needed

A faster analysis is mandatory

Calculation speed improvements
$>$ Same segment hit in both data sets (A) and (B)
> Consider only Core, hit segment, direct neighbor segments (left/right + top/down)
> Only 40 samples compared among the 120
> Take into account only the 200 lowest x^{2} values
NB: at the end of the comparison process, the final X^{2} value is a confidence criterion

Effective data analysis duration
Reduced to 5 days

3D scans

3D scans in full volume -> ${ }^{137}$ Cs

Typical AGATA scan planning:
$>\mathrm{T}_{\text {init }}$: crystal @ IPHC
> $\mathrm{T}_{0}=\mathrm{T}_{\text {init }}+1$ week: crystal operational in the test cryostat (AGATA)
> $T_{0}+2$ weeks: scans performed
> $\mathrm{T}_{0}+3$ weeks: database available

3D scans

PSCS: no detector geometry input
$>$ Voxel inside the crystal $->$ large statistics $->$ low final x^{2} value
> Voxel outside crystal -> low statistics -> high final X^{2} value

3D scans: pulse shapes

Example along azimuth

3D scans: pulse shapes

Example along depth

3D scans: pulse shapes

Example along radius $Z=50 \mathrm{~mm}$

3D scans: pulse shapes

Example along radius $Z=2 \mathrm{~mm}$

3D scans

3D scans: hit segments

 3D scans: hit segments
segment hit $Y=-30$

segment hit $Y=-28$

segment hit $Y=-26$

segment hit $Y=-24$

3D scans: hit segments
segment hit $Y=-22$

segment hit $Y=-20$

segment hit $Y=-18$

segment hit $Y=-16$
 3D scans: hit segments
segment hit $Y=-14$

segment hit $\mathrm{Y}=-12$

segment hit $\mathrm{Y}=-10$

segment hit $Y=-8$

3D scans: hit segments
segment hit $Y=-6$

segment hit $Y=-4$

segment hit $Y=-2$

segment hit $Y=0$

Databases comparison

Slice $Z=6 \mathrm{~mm}$
Average shift : 4.2 mm

Slice $Z=68 \mathrm{~mm}$
Average shift : 3.8 mm

Databases comparison

Conclusions

2D scans -> many parameters may be studied
$>$ Efficiency

- Lattice anisotropy
> Segmentation line
> Peak shift for charge trapping
> Li contact thickness
PSCS technique is operational at IPHC
> Efficient
Reconstructs the 3D crystal geometry
- Enables comparing pulse-shape databases
> Time considerations for AGATA crystal full-volume scan
$\square 2$ weeks of scans
- 1 week of offline analysis

Construction of a pulse-shape database of 48500 points

- Mean pulse shape results

Shapes well differentiated with 2 mm pitch
Very low noise level in the final average pulse shapes
> Take care

- Proper alignment mandatory
- Collimated beam diameter limitation

Outlook

Outlook

> Convert the B006 pulse-shape database to insert it in the AGATA PSA algorithm

Improved in-beam energy resolution?
\square Tracking efficiency improvement?
>R\&D on Ge detectors
\square Improvement of pulse-shape modellingInfluence of dead layers on Ge bulk responseResponse of non-standard Ge crystal geometries
\square Others...
> Collaborations

- AGATA

ENSAR2 JRA PSeGe

- Canberra France

Any other is welcome...

THANK YOU
 for your attention

Adjustment frame

Supertraces

supertrace - noise evaluation B1 fired

FULL scale

- residual electronic noise $<0.1 \%$
- segments away from the hit one: variations due to crosstalk

Segment boundaries

HPGe active crystal

Fit with equation 3.1

Linear fit

Rotation in vertical position

Uctoder 19-L5, 2015

CANBERRA

(a) BEFORE ALIGNEMENT

Depth [mm]

(b) AFTER ALIGNEMENT

October 19-23, 2015

Horizontal alignment

Peak shift

Average Core peak shift

Average Seg. peak shift

2D ${ }^{137}$ Cs scans

Core $\mathbf{T 9 0}=\mathbf{t}(\mathrm{ampl} 90 \%)-\mathrm{t}(\mathrm{ampl} 10 \%)$
Front scan 2 mm pitch

Slice 1

Slice 4

Slice 2

Slice 5

Slice 3

Slice 6

Charge sharing

- no efficiency loss if segments in addback mode IF large integration (55-61 keV) range

Charge sharing

γ spot cross-section

If Hole collection on inter-electrode gap

- 1 interaction, 2 segments hit
- 4% energy loss
- recognizable with $\sum E_{\text {segment }} \ll E_{\text {Core }}$

	low-energy component	full-energy component
Centroid [keV]	57.0	59.5
FWHM [keV]	2.20	1.16
Area [counts]	416	441

Charge sharing

segment $\mathbf{A 1}$ spectrum vs scanning position

Charge sharing

segment F1 spectrum vs scanning position

Charge sharing

segment $A 1+F 1$ addback spectrum vs scanning position

Charge sharing

- hole cloud reaching inter-segment gap
- charge NOT collected within the integration time
- readout value misses the weighting potential value @ hole cloud position

Charge sharing

(a)

(b)

Charge sharing

Charge charing intensity map

slice 2

slice 5

slice 3

slice 6

Ringberg Symposium
slice 4

slice 7

October 19-23, 2015

Charge sharing

Charge charing intensity map

1－2 interface

4－5 interface

2－3 interface

5－6 interface

G．Duchêne

