

Sino-German GDT Symposium Ringberg, Tegernsee

Surface alpha events on segmented coaxial detectors

Lucia Garbini Max-Planck-Institute for Physics

- Introduction

- physics goal and motivation

- Experimental set up

- the detector prototype: SuperSiegfried
- the test facility: GALATEA

- Top surface scanning

- alphas in Germanium Detectors
- energy spectra and pulses
- pulses characterization
- Summary and Outlook

Physics goal and motivations:

GOAL:

characterization of detector response for **alphas signal**

MOTIVATION:

Alpha Background:

- Lead contamination on surfaces
- serious and often limiting
- $0\nu\beta\beta$, Dark Matter searches

Study alpha events in a controlled environment

- mirror pulses
- charge trapping

Sino-German GDT Symposium

Experimental setup:

Shoot alphas from ²⁴¹Am on detector prototypes inside GALATEA

GALATEA: I. Abt et al, Nucl. Instrum. Meth. A 782 (2015) 56-62

- vacuum chamber
 - low penetrating sources
- cryo tank to cool down the detector
- 3 motors to move 2 collimators in 3D:
 - collimated Am241 in the top collimator
 - scan along the radius
 - scan along the azimuthal angle
- electronics inside

Super Siegfried (SuSie):

- n-type true coaxial segmented detector
- segmentation scheme:
 - 3 in z X 6 in phi
 - 1 top segment not segmented in phi
- passivation layer on the top segment

What do we expect in our detector?

Alphas = heavy charged particles

- they lose energy by dE/dx
- short path inside the detector
 - surface events
 - long pulses [low fields]

- alphas from the ²⁴¹Am

- all with the same Energy $\sim 5.6~\text{MeV}$
- all the same penetration depth

The final result depends on the combination of:

1) geometrical effect

- different incident angle
 - different path inside the dead layer
 - different energy deposited inside the detector

2) stochastic effect (main one)

- charge trapping

Alphas in the energy spectrum: r = 30 mm

- alpha bump in the core and top segment energy spectrum
 - visible also the 59 keV gamma line from the ²⁴¹Am

20 October 2015

Energy correlation: top segment and core

evidence of hole trapping: the "blob" is out of the diagonal

Energy correlation: top segment and core

evidence of hole trapping: the "blob" is out of the diagonal

A typical multi segment event (MSE)

A typical Single Segment event (SSE)

A typical Event from the alpha "blob"

A typical Event from the alpha "blob" at higher radius

Energy Correlation for different scanning position

Alpha events selection strategy

- purest sample of Alphas = **BLOB**

- high energy gammas not contained in the 5 mm thick top segment

What does happen in the segments underneath?

What does happen in the segments underneath?

- fraction of truncated pulses in the two segments underneath
 - correlation with the energy released
- more electrons are trapped

Conclusions:

- Scan of the **passivation layer** of a true coaxial n-type Ge detector done with ²⁴¹Am

- pure samples of surface events can be characterized
- segmentation can help in the characterization:
 - segments underneath show truncated pulses
- electrons seem to be "more trapped" than holes

What's next:

- complete characterization of the response to alpha particles:
 - timing information
 - closer look to the low energy alphas
- side scan of true coaxial n-type detector with ²⁴¹Am
 - no passivation layer
 - metallization
 - first results

Side Scan with ²⁴¹Am still on going (PRELIMINARY!!!)

Backup slides

A typical Event from the alpha "blob" from the side scan

Top surface scanning

Scanning along the radius:

- fixed angle: varying the radius with steps of few mm
- check the different paths for the charge carriers
 - close to the surfaces
 - **X** point of interaction
 - → electrons
 - → holes

Scanning along the azimuthal angle:

- fixed radius: varying the angle with steps of few degrees
- check the effect of the Electric Field
 - change on the collection efficiency
- x point of interaction
- \rightarrow electrons
- → holes

Alphas in the pulses

Scanning points along the radius: core comparison

Scanning point along the radius: Seg 19 comparison

Seg19 Spectra for different radius and φ = 272°

From the energy spectra to the thickness value

- $E_a \rightarrow$ initial energy of the alpha = 5.637 MeV
- $E_m \rightarrow$ measured energy of the alpha
 - fit the alpha bump with a gaussian
 - get the mean of the gaussian
- **dE/dx** \rightarrow energy loss for unit of distance: = **0.2 MeV/µm**
 - by an alpha particle at 5.637 MeV
 - in Germanium
- d → length of the path done in a non sensitive volume
 => the thickness of an effective dead layer

Thickness of the effective dead layer

Scanning along the radius

Scanning points along azimuthal angle: core comparison

Core Spectra for different azimuthal angle and r = 26 mm

Sino-German GDT Symposium

Scanning points along the azimuthal angle: seg19 comparison

Seg19 Spectra for different azimuthal angle and r = 26 mm

Estimated thickness of the effective dead layer:

29

Scanning along azimuthal

R&D with Ge detectors (III): GALATEA test-stand from outside

GALATEA: from the inside

Something has to move

Ap. Dg > 1 t

→ WHY?

- perform a **3D scan of the detector**
 - multiple sources

→ HOW?

- 3 UHV compatible motors
 - vertical
 - horizontal
 - circular
- 2 collimators
 - SIDE: solidal with VM
 - TOP: solidal with HM

Tungsten segments

From a top surface scanning point:

USING a source data set:

- clear structure due to alphas
 - ratio plot
 - correlation plot
- difficult to avoid the misidentification
- not only in the 19th segment
 - also in the segments underneath (\rightarrow mirror pulse)
- possible way to get rid of the alphas:
 - scan on the energy of the alphas
- still MISSING the automation

Data Analysis: alphas in the pulses

Zoom on the low energies:

- 59 keV gamma from the ²⁴¹Am
- 57 keV ka from ^{74}W

Core comparison: phi = 272

Seg19 comparison: phi = 272

Data Analysis: scanning points along the radius

Zoom on the low energies:

- 59 keV gamma from the ²⁴¹Am
- 57 keV ka from ^{74}W

Core comparison: r = 26 mm

Seg19 comparison: r = 26 mm