

BERKELEY LAB

Readout Electronics and Cables

Alan Poon

Institute for Nuclear and Particle Physics Nuclear Science Division

Outline

- Introduction
- Front-end electronics for Ge detectors
- Cables
- R&D ideas

Low background rare event searches

• Signal expected in real-time experiments

Type of experiment	Signal	Detection (Background) rate
SNO Solar neutrino experiment (1998-2006)	Cherenkov light from e-	~15 events t ⁻¹ d ⁻¹
LUX WIMP search	Scintillation light and ionization from nuclear recoils	(~15 events t ⁻¹ d ⁻¹)
Majorana neutrinoless double beta decay search	e- in Ge diode detectors	(< 1 event t ⁻¹ y ⁻¹)

Signal readout in Ge detectors

• Typical scheme (move hot components far away):

Issue: The cable length is of the order of 1-2 m now, but may be much longer in a large scale 76Ge experiment

The ALARA principle

- Choose radiopure materials
- Keep hot stuff away from active detector volume

Cattadori, LRT 2015

The ALARA principle

- Choose radiopure materials
- Keep hot stuff away from active detector volume

EX: MAJORANA DEMONSTRATOR

Overview of MJD LMFE-preamp

Resistive feedback charge-sensitive preamplifier:

IEEE Nucl. Sci. Symp. Conf. Rec. 2011, 1976 (2011).

7 mm

by using stray capacitance

Production: wafers

Ti/Au sputtering

patterning aGe

patterning traces

electrical tests

aGe sputtering

dicing boards

Production: on-board electronics

cable threading

silver epoxying

wire bonding

transport tray

Making front-end electronics - MJD

• Component assays prior to production:

Component	Material	Purit	y (g / g)	Counts /	Ref.	
		²³² Th	²³⁸ U	²³² Th	²³⁸ U	
Substrate	Fused silica	101×10 ⁻¹²	284×10 ⁻¹²	0.0259	0.0616	MJ ICP-MS
Resistor	a-Ge	5×10 ⁻⁹	5×10 ⁻⁹	0.0001	0.0001	MJ ICP-MS
Traces	Au	47(1)×10 ⁻⁹	2.0(0.3)×10 ⁻⁹	0.0421	0.0015	MJ ICP-MS
Traces	Ti	< 400×10 ⁻¹²	$< 100 \times 10^{-12}$	~ 0	~ 0	MJ ICP-MS
FET	FET die	$< 2 \times 10^{-9}$	$<$ 141 \times 10 ⁻¹²	< 0.0107	< 0.0006	MJ ICP-MS
Bonding wire	Al	91(2)×10 ⁻⁹	9.0(0.4)×10 ⁻¹²	0.0004	~ 0	MJ ICP-MS
Epoxy	Silver epoxy	< 70×10 ⁻⁹	$< 10 \times 10^{-9}$	< 0.0685	< 0.0082	MJ gamma
Total				<0.1476	<0.0720	

- Largest backgrounds: fused silica substrate, gold traces
- Full board assays: ~2-3x higher in background

MiniPPC

Test detector for front-end electronics

Diameter: 2 cm Length: 1 cm Impurity concentration: ~1 x 10¹⁰/cm³ p-type Point contact: 1.5mm dia.

LMFE performance with MiniPPC

Forward bias reset JFET front-end

Continuous discharge

By forward biasing the input gate-to-source junction, the leakage and signal currents flow to ground.

- Low noise dual-gate JFET Feedback capacitor, between output of the front end and the JFET signal gate, provides charge gain. Typical charge-sensitive configuration.
- Stable operating point Second feedback loop to the JFET's substrate gate controls its drain current. No feedback resistor required.

Jonathan Leon et al

Forward bias reset JFET front-end

- Wafer material: 0.5 mm thick Fused silica (MarkOptics: Corning 7980)
 - low loss tangent, $O(10^{-4})$
 - Good thermal conductivity, 41.9 W/(m*K)
 - Established recipe for electrical connection.
- MX-30 Tetrode JFET Bare-die (MOXTEK)
 - 2 nV/√Hz
 - C_{gs} = 0.53 pF
 - *g*_m = 4 mS

Jonathan Leon et al

Performance

Ultra-low noise, mechanically cooled Ge

- MiniPPC
 - Reprocessed with smaller point contact
 - Point contact wire-bonded to "off-theshelf" CMOS preamp (XGLab)
- Cryostat
 - Variable-temperature detector mount
 - Cooled by Gifford-McMahon cryocooler with vibration isolation between cooler and cold finger
- Tests
 - Noise performance vs operating temperature
 - 39 eV FWHM (pulser) at T=43K

P. Barton et al. 2015

Ultra-low noise, mechanically cooled Ge

P. Barton et al. 2015

Coaxial Cables - GERDA

GERDA Phase-1

²²⁸ Th [.] 1 1+0 5 mBa/ka	cable	ref.	type	1-string	3-string
23811 < 59 mBa/ka	Habia SM50	[66]	50 Ω , coaxial	15	24
$C_{\rm L}/D{\sf T}{\sf E}{\sf E}$ 1 mm OD	SAMI RG178	67	HV (4 kV) , coaxial	4	-
U/FIFE I IIIII UD	Teledyne Reynolds 167-2896	[68]	HV (18 kV), coaxial $HV (5 kV)$, unshielded	1	2
linear density = 2.7 g/m	total number	[00]		20	38
Construction: Conductor Dielectric Braid Jacket Weight Temperature rating (°C Order reference	Silver plated high strength copper alloy (Solid Silver plated coppe FEP, Brown-trans 2,7 -55 / - 30000-	1x0,16) d PTFE r (0,06) sparent r kg/km +200°C 050-00	0,16 0,52 0,85 1,00	[arXiv:1212	2.4067v1]
 Over an order of m Silver-plated Cu is Scaling to a HV can higher activity 	agnitude too radioac s likely hot able (5 kV DC rating)	tive mea	for MJD ans even		

Table 3 Cables deployed in the 1-string and 3-string locks.

Other commercial options?

Coaxial, Ribbon and Multi-Conductor Cables

TEMP-FLEX COAXIAL CABLES

MOUSER Temp-Flex			Nominal	Signal	Braid	Calar	1.121	Price I	Per Ft.	2000
STOCK NO.	Part No.	rig.	OD (in.)	Conductors	Shield	Color	1	10	25	50
Twinax Cable · Ca	pacitance: 14.5pF/ft.	 Differenti 	al Impedance: 100+/-5 0	Ohms				1.126.0	1000	
538-100TX-08	100TX-08	A	0.049+/-0.005	32AWG	44AWG	1-Blue, 1-Green	2.12	1.99	1.83	1.5
Flexible Microwave	Coaxial Cables · Ca	pacitance: 3	29.0pF/ft. (95pF/ft.) + In	npedance: 50+/-1 Ohms	1.12.000					
538-141SC-1901	141SC-1901	B	0.157+/-0.005	19AWG	40AWG	Blue	11.56	10.87	9.95	8.37
538-047SC-2901	047SC-2901	в	0.056+/-0.003	29AWG	46AWG	Blue	4.49	4.22	3.87	3.25
Microminiature Coa	xial Cable - Capacitar	tce: 30pF/ft	Nominal · Impedance	1: 50+/-2 Ohms		19.000	1000.2	- 200220		
538-086SC-2401	086SC-2401	B	0.101+/-0.005	24AWG	40AWG	Blue	7,40	6.96	6.38	5.30
538-50MCX-37	50MCX-37	C	0.125+/-0.005	42AWG	48AWG	Blue	2.55	2,39	2.20	1.80
High Speed Data C	ables · Capacitance:	30pF/ft. No	minal · Impedance: 5	0+/-2 Ohms				(2)		C. 33
538-50CX-41	50CX-41	D	0.071	30AWG, 7/38	40AWG	Black	2.81	2.64	2.42	2.0
538-50CX-42	50CX-42	D	0.100	26AWG, 7/34	38AWG	Black	3.64	3.42	3.14	2.65

TEMP-FLEX FLAT FEP RIBBON CABLES

molex

Mouser catalogue

Mouser Part #: Description:

Q Enlarge

nouser runt m.	
Manufacturer Part #	
Manufacturer:	
20 (2002)	

Coaxial Cables 42AWG PFA, 50 OHM MICRO COAX, PER

FT

538-50MCX-37

50MCX-37

Temp-Flex

Learn more about Temp-Flex 50MCX-37

Page 1,389, Mouser Online Catalog R Page 1,389, PDF Catalog Page T Data Sheet

Radiopurity concerns:

- dye in the jacket
- silver-plated copper alloy in braid and central conductor

It became clear that we needed to do a special production run

Coaxial Cables - MJD

- FEP and PFA
 - have high dielectric strength (Dupont: 260 kV/mm)
 - are radiopure

Cu

dielectric

	Commis	Lab	R	leporte	d in pg/	g	Re	ported	in µBq	/kg
	Sample	Lab	232Th	±1σ	238U	±1σ	232Th	±1σ	238U	± 1σ
	Cu conductor wire (signal, CFW)	LBNL	<30	-	<5 <mark>0</mark>	-	<120	-	<620	
	Cu conductor wire (high voltage, CFW)	LBNL	<30	-	180	50	<120	-	2200	620
	Cu wire 50AWG (uncleaned, MWS ¹)	LBNL	120	20	73	28	490	80	910	350
P	Cu wire 50AWG (cleaned, MWS)	LBNL	30	30	42	10	120	120	520	120
	PFA416 ²	PNNL	2.60	**	0.89	**	10.66	**	11.09	**
	PFA340A ³	PNNL	3.28	**	1.90	**	13.45	**	23.57	**
	FEP 106	PNNL	0.11	**	1.96	**	0.43	**	24.36	**
	FEP NP20	PNNL	0.99	**	0.61	**	4.05	**	7.60	**
ß	FEPTE 9494	PNNL	4.03	**	0.71	**	16.52	**	8.75	**

• The radiopurity of the Cu drives the background budget:

- reduce OD of central conductor
- reduce OD of inner dielectric
- helical shield (instead of braid)

Coaxial Cables - MJD

• Contracted Axon' in France to make the "picocoax" cable

		Material	Signal	HV	
1	central conductor	Bare Cu	0.0762 mm ϕ	0.152 mm <i>ø</i>	
2	inner dielectric	FEP / PFA	0.254 mm <i>φ</i>	0.77 mm ϕ	
3	helical shield	Bare Cu	AWG50	AWG50	
4	jacket	FEP / PFA	0.4 mm <i>ø</i>	1.2 mm <i>φ</i>	
L	inear mass c	0.4 g/m	3 g/m		

Coaxial Cables - MJD

- Contracted Axon' in France to make the "picocoax" cable
- Additional testing, cleaning in ultrasonic bath and drying between production steps (conductor prep, inner dielectric extrusion, shielding, jacket extrusion).

HV Cable	Technique	Th (c/ROI/t/y)	U (c/ROI/t/y)	
Projection	Simulation & assay	<0.02	<0.06	
Axon' - Run 1 (QA issue at factory - no cleaning steps)	ICPMS	1.1	16.5	
Axon' - Run 2	ICPMS & Gamma	<0.004	<0.081	

Goal: << 1 c/ROI/t/y

Processing PCBs

- Once selected the proper raw material →Important not to spoil its radiopurity by PCB process.
- Avoid finishing protective layers (soldermasks etc.)
- Minimize Cu deposition
- Gold finishing required for bonding (typically <1 um) introduces significant U contaminations. Minimize golded surfaces (in GERDA few mm²/detector)

				Solfor	Fosfor		Cleanin g	PreAu	Micro Etchin	Gold		Nickel
39	к	ppb		2000	4900		6100	Saturate	96000	32000000		38000
208	Pb	ppb	<	0,3	0,7		11	28	17	2	<	10
232	Th	ppb	<	0,03	0,05	<	0,03	1	0,04	1,7	<	0,3
238	U	ppb		0,13	22		0,8	5,8	0,81	7,7	<	0,3

A cryogenic temperature sensor

Designs

Details in Dhar et al., arXiv:1508.05757

A cryogenic temperature sensor

Microelectronics with **parylene** substrate:

- "Low" background, use with small mass
- "flexible circuitry"
- applications in medical fields

Thermal testing

Implementation in low-background experiments

 Circuit components (concepts):

Parallel plate capacitor

PCB:

- parylene backing only
- parylene on clean conductor substrate (e.g. EFCu) as ground plane or mechanical support
- some tuning of capacitance may be necessary for low noise applications

What do we need to do? (my opinion)

- "Front-end" electronics
 - custom ASIC
 - control of die radioactivity
 - source clean gold
- Cables and harnesses
 - methods to fabricate thin wires and foils from EFCu cleanly
- Connectors
 - suitable mating form with chosen cables
- PCB
 - contamination tracking
 - clean substrate materials with superior dielectric behavior?

Summary

- The next-generation underground rare-event search experiments demand ultrapure targets, and electronics and associated components.
- Painstaking sourcing and assaying of materials are necessary to meet the stringent radiopurity goals.
- Much efforts have been devoted to designing and testing low-noise, low-background front-end electronics that can be used in both low-energy (DM, coherent neutrino scattering) and "highenergy" (double beta decay) experiments.

The End

Radiopurity

Total sensor mass was ~ 4 mg.

Item	Mass %	Conc.	(ppb)	Activity (nBq)		
		Th-232	U-238	Th-232	U-238	
		Au senso	ors			
Copper wire	32.0	< 0.087	< 0.040	< 0.431	< 0.608	
Silver epoxy	12.2	< 0.079	< 0.011	< 0.150	< 0.064	
Parylene C (sensor)	51.9	0.53(3)	0.25(6)	4.3(0.2)	6.2(1.5)	
Parylene C (wires)	1.6	0.53(3)	0.25(6)	0.13(0.01)	0.19(0.05)	
Micro-90	~ 0	< 1.5	< 0.6	~0	~0	
Au traces	2.3	47.4(1.1)	2.0(0.4)	17.0(0.4)	2.2(0.4)	
Ti traces	~ 0	< 0.4	< 0.1	~ 0	~ 0	
Total	100.0			< 21.9	< 9.2	
		a-Ge sens	ors			
Copper wire	32.3	< 0.087	< 0.040	< 0.431	< 0.608	
Silver epoxy	12.4	< 0.079	< 0.011	< 0.150	< 0.064	
Parylene C (sensor)	52.4	0.53(3)	0.25(6)	4.3(0.2)	6.2(1.5)	
Parylene C (wires)	1.6	0.53(3)	0.25(6)	0.13(0.01)	0.19(0.05)	
Micro-90	~ 0	< 1.5	< 0.6	~ 0	~0	
Au traces	1.1	47.4(1.1)	2.0(0.4)	8.0(0.2)	1.0(0.2)	
Ti traces	~ 0	< 0.4	< 0.1	~0	~0	
Ge traces	0.2	2.4(0.7)	1.7(0.4)	0.08(0.02)	0.17(0.04)	
Total	100.0			< 13.1	< 8.2	