

Ge detectors and 0vββ-decay: GERDA

Béla Majorovits, MPI für Physik

- Why and how to search for $0\nu\beta\beta$ -decay
 - The GERDA experiment
 - GERDA Phase I Results
 - GERDA Phase II
 - Germanium for ton scale?

Why to search for $0\nu\beta\beta$ decay?

Effective Majorana neutrino mass contributes to $0\nu\beta\beta$ -decay rate:

$1/\tau =$	G(Q⁵)) • g _A ⁴ • []	$ \mathbf{M}_{\mathrm{nucl}} ^2$	• $\langle m_{ee} \rangle^2/m$	l_e^2
0vββ decay- rate	Phase space factor	Eff. ax. vec. coupling const	Matrix element	Effective Majorana Neutrino mas	Electron mass

Why to search for $0\nu\beta\beta$ decay?

Observation of 0vββ decay:

- Lepton number violation!
- Neutrino must have Majorana nature!

- Determination of absolute mass scale (?)
- Mass hierarchy of Neutrinos (?)

- Information on CP violating phases?
- → Baryogenesis via Leptogenesis?

How to search for $0\nu\beta\beta$ decay?

Signature: Sharp peak at Q-value of the decay

How to search for $0\nu\beta\beta$ decay?

Figure of merit for a LIMIT setting sensitivity:

$$vT_{1/2} \propto a \varepsilon - \sqrt{\frac{m t}{b \delta E}}$$

b=0:
$$T_{1/2} \propto a \epsilon m t$$

M _{nucl}	Nuclear matrix element	Select Isotope
b	background rate of the experiment	Minimize and select material
a	abundance of isotope under consideration (< 1.0)	Use isotope with high natural abundance or enrich material
m	active target mass of the experiment	Increase target mass
3	signal detection efficiency (<1.0)	Source = Detector
δΕ	Energy resolution	Use high resolution spectroscopy
t	Measuring time (< 20y)	

M_{nucl} enters the equation if ⁰^vT_{1/2} sensitivity is converted to <m_{ee}>

How to search for $0\nu\beta\beta$ decay? Chose your isotope: expected decay rates per unit target mass: $1/\tau = \mathbf{G}(\mathbf{Q}^5) \cdot \mathbf{g}_A^4 \cdot |\mathbf{M}_{\text{nucl}}|^2 \cdot \langle \mathbf{m}_{\text{ee}} \rangle^2 / \mathbf{m}_e^2$ 10^{4} 10 meV R. G. H. Robertson. Mod. Phys. Lett. A, K Specific Phase Space, Mg⁻¹y⁻¹eV⁻² 28, 1350021 (2013) Nd 100 meV Te Xe Ge 1 eV 1 event per ton per year g_A 4 5 6 7 8 9 6789 5 6 7 8 9 2 0.1 10 100 $|\mathbf{M}_{nucl}|^2$ Matrix element squared → Considerable uncertainties! No isotope preferred 6

GERDA: the Collaboration

GERDA Phase I results

Operate HPGe detectors directly in cryogenic liquid

Phase I data taking: Nov. 2011 to May 2013 14.6 kg coaxial detectors 3.0 kg BEGe detectors → 21.6 kg yr exposure

→ ${}^{0\nu}T_{1/2}({}^{76}Ge) > 2.1 \ 10^{25} \text{ yr} (90\% \text{ C.L.})$ frequentist analysis median sensitivity: $T_{1/2}(0\nu\beta\beta) > 2.4 \ 10^{25} \text{ yr}$

GERDA Phase II

GERDA Phase II: New detectors

Production and characterization of BEGes

Energy resolution of GERDA BEGe detectors in vacuum cryostat

Coax cable towards DAQ

(~ 10m)

B. Majorovits

GERDA Phase II preparations: Front end

Original plan: JFET on BEGe holder plates: High JFET mortality

→ Start with Phase I like readout:
VFE at CC3 level > 40 cm from detectors

Knowledge from Phase I (5 BEGes): FHWM ok, PSD ok

> Flexible cables (signal and HV) in use between detectors and CC3: CuFlon, Pyralux (Kapton family)

00 20	10 0	0 0		
0.00	0000	0800	0805	0000
	0.0 0.0	0 ⁰⁰ 0	090	0000
and a	09.00	0000	0000	00 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	0000	0000	0000
	0000	0 ⁰⁰⁰	0000	000
000	0000	0000	0000	0000
000	0000	0 ⁰ 0	00 0 G	0000
0000	0000	0000	0000	0000
	0000	0000	0000	00 0 5
A	10 0			

Flex cables towards detectors (40cm – 80cm)

GERDA Phase II preparations: the LAr veto:

Copper shroud lined with reflecting TPB coated Tetratex

7 bottom 3" PMTs

GERmanium

9 top 3" PMTs

TPB coated fiber shroud with SiPMs

GERDA Phase II LAr veto results:

GERDA Phase II LAr veto results:

GERDA Phase II preparations:

All BEGe 30 detectors mounted into their holders and tested Aug 2015: Mounted 5 string array (22 BEGes, 5 Coax)

GERDA Phase II: 5 string array results

GERDA Phase II: 5 string array results

~ 1 kg yr of background data taken: no real surprises

GERDA Phase II: Present status and plans:

Some BEGes showed unacceptable leakage current

 \rightarrow 7 out of 30 BEGes are being reprocessed at manufacturer site

- Probably most critical source for bad detector performance in GERDA surrounding identified: contacts facing upward (particulates from mounting procedure in grove)
 - → Designed new holder concepts for all contacts facing downwards
 - Remaining coax detectors being processed at manufacturer
 - Presently: 3 strings installed with 8 BEGes and 4 coax detectors

(7 BEGEs and 3 Coax working with acceptable FWHM)

Next integration campaign:

Nov./Dec. with (hopefully) all detectors available

Germanium for ton scale?

Comparison of experimental efforts with different isotopes:

Isotope	Experiment	Active target mass	Planned active exposure	FWHM energy resolution at Rol	Projected Bkg in Rol	Projected Bkg in Rol	Limit setting sensitivity
		[moles]	[mol yr]	[keV]	[cts/(keV kg yr)]	[cts/(Rol t yr)]	[10 ²⁶ yr]
⁷⁶ Ge	GERDA Phasell	360	1400	3	0.001	3	~2
⁷⁶ Ge	Majorana demonstrator	415	1400	3	0.00075	3	~2
^{/6} Ge	Ton scale initiative	10000	10000	3	0.00003	0.3	~60
⁸² Se	SuperNEMO prototype	85	250	120	1	just 2nbb	~0.7
⁸² Se	SuperNEMO 20 modules	1200	8400	120		just 2nbb	1
⁸² Se	CUPID	4000	40000	< 5	< 0.0001	0.5	~50
Dout	COBRA	350	2000	35	0.001	35	~2
¹³⁰ Te	CUORE	1600	8000	5	0.01	50	1
¹³⁰ Te	SNO+	1230	6150	120	0.00006	7	1
¹³⁰ Te	SNO+ Phase II	7380	36900	75	0.00006	4	6
¹³⁸ Xe	EXO200	1450	3700	60	· · · · · · · · · · · · · · · · · · ·	1	0.6
¹³⁸ Xe	NEXO Phase I	33000	165000	60		4	6
¹³⁶ Xe	NEXO Phase II	33000	330000	60	a final formal	just 2nbb	300
¹³⁶ Xe	Next	660		17	0.0005	10	6
¹³⁸ Xe	KAMLAND ZEN	650	1300	240	0.0007	175	0.3
¹³⁰ Xe	KAMLAND ZEN next phase	1000	2000	150	<0.0007	<100	2

Germanium for ton scale?

- → Goal: Sensitivity for ~10 meV detection to cover IH
- \rightarrow sensitivity to $\langle m_{\beta\beta} \rangle$: 8 meV \rightarrow Half lives 10²⁸ yr to 10²⁹ yr

Need ~ 10 ton·yr exposure with ~ 10^{-4} cts/(kg yr) background in Rol

- Need ton scale (isotope!) experiment(s)
- Good energy resolution essential:
 - Bolometric
 - Germanium, semiconductor
 - Xenon?
- Need better understanding of matrix elements (g_A!)
- Need even better control of backgrounds
- Need multi isotope approach

\rightarrow Germanium is one of the few isotopes!

Conclusions:

- Search for 0vββ-decay has high priority
- No ββ isotope really preferred
- The combination of high energy resolution and cleanliness make germanium a very good candidate for 0vββ-decay searches
- GERDA Phase I reached its goals
- GERDA Phase II preparations:
 - Detectors are available
 - LAr veto works
 - Integration mechanically feasible
 - Detector performance in GERDA surrounding can be good
 - Physics data taking may start soon
- Germanium is one fo the few isotopes feasible for ton scale
- Need concentrated R&D efforts

