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Outline

• Neutrinoless double-beta decay in 
germanium

• The MAJORANA DEMONSTRATOR:
• Electroformed copper
• Shielding
• Detectors
• Projected backgrounds
• Current status



• Beta decay is forbidden in certain isotopes, while 
double beta decay is allowed

• If neutrinos are Majorana, a fraction of those 
decays may be “neutrinoless”

• This is the only practical way to show that 
neutrinos are Majorana

• Experimental signature is a peak at the end of the 
energy spectrum of the emitted electrons

2 neutrinos
no neutrinos
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Neutrinoless double-beta decay



• Perform a “counting experiment”:
If no counts are seen, the half-life is at least as long as…

Sensitivity:

CUORE-0 2015
GERDA P1 2013 EXO-200 2014

KamLAND-ZEN 2014
KKDC 2004

Planck 2013

energy resolution

mass live-time
abundance

Detect eff.

background rate

Experimental searches for 0νββ



Germanium sensitivity

Probing the inverted hierarchy requires exposures of tonne years for background rates of 1 count per 
tonne per year in the region of interest!

• 76Ge isotope for 0νββ:
• Q-value of 2039keV above 

most backgrounds
• Can be enriched to >87% in 

76Ge (nat. abundance ~ 8%)
• Slow 2νββ rate (1021 yr)

• Germanium detectors:
• Source is detector (efficiency 

is high)
• Good energy resolution
• Well established technology
• Intrinsically ultra-clean 

(high-purity germanium)



Germanium detection limit

• 76Ge isotope for 0νββ:
• Q-value of 2039keV above 

most backgrounds
• Can be enriched to >87% in 

76Ge (nat. abundance ~ 8%)
• Slow 2νββ rate (1021 yr)

• Germanium detectors:
• Source is detector (efficiency 

is high)
• Good energy resolution
• Well established technology
• Intrinsically ultra-clean 

(high-purity germanium)

Probing the inverted hierarchy requires exposures of tonne years for background rates of 1 count per 
tonne per year in the region of interest!



The MAJORANA collaboration



The MAJORANA DEMONSTRATOR

• Located underground at 4850’ Sanford Underground Research Facility
• Background Goal in the 0νββ peak region of interest (4 keV at 2039 keV)

3 counts/ROI/t/y (after analysis cuts)  Assay U.L. currently ≤ 3.5
scales to 1 count/ROI/t/y for a tonne experiment

• 44-kg of Ge detectors
– 29 kg of 87% enriched 76Ge crystals
– 15 kg of natGe
– Detector Technology: P-type, point-contact.

• 2 independent cryostats
– ultra-clean, electroformed Cu
– 20 kg of detectors per cryostat
– naturally scalable

• Compact Shield
– low-background passive Cu and Pb

shield with active muon veto

Funded by DOE Office of Nuclear Physics and NSF Particle Astrophysics, 
with additional contributions from international collaborators.

Goals:   - Demonstrate backgrounds low enough to justify building a tonne scale experiment.
- Establish feasibility to construct & field modular arrays of Ge detectors.
- Searches for additional physics beyond the standard model.



MAJORANA DEMONSTRATOR implementation

Three Steps:
1) Prototype cryostat: 7.0 kg (10) natGe
Same design as Modules 1 and 2, but fabricated 
using OFHC Cu Components

2) Module 1: 16.8 kg (20) enrGe
5.7 kg (9) natGe

3) Module 2: 12.8 kg (14) enrGe
9.4 kg (15) natGe

June 2014-
June 2015

May 2015
Operating

Early 2016



Sanford Underground Research Facility



Copper electroforming

Installation of mandrel in bath

• Eforming at PNNL and at 4850’ at SURF
• Eforming complete in May 2015
• Machine shop production continuing

Copper ready to cut

Lathe installed UGBake/Quench

Flattened Plate

Temporary Clean Room at Ross Shops



Electroformed parts stored in nitrogen



Shield

Veto + borated poly + poly

Note keyed structure of shield

• Pb shield constructed
• Outer Cu shield layer installed
• Rn exclusion box installed
• Poly layers being installed
• Hovair in-use underground
• Veto panels operational
• Calibration system 

demonstrated



Shield Details



Monolith



• P-type Point Contact HPGe
• Introduced by P.N. Luke in 1989 

(n-type), popularized by Collar 
and Barbeau (~2008)

• Small point contact to readout 
charge, low capacitance, low noise

• Thick outer contact (n+, lithium 
diffused), strongly attenuates 
alphas 

• Large variation in drift times 
across the detector volume

Semi coaxial detector

Point contact detector

Weighting
potential

PPC detectors



• Sharp weighting potential allows multi-
site events to be identified

• Gamma rays at 2MeV typically scatter 
more than once

• Small capacitance results in low 
noise and excellent performance at 
low energies

1332 keV
multi-site 
event in a 
PPC detector

PRL 101 251301 (2008)

Properties of PPC detectors



Detectors

SDU Design
Dimensional Measurement

UG Detector Assembly

• All detector related assembly 
performed in N2 purged 
gloveboxes.

• All detectors’ dimensions 
recorded by optical reader.

• ORTEC selected for enriched detectors. 
• 35 Enriched detectors at SURF 29.68 kg, 87% 76Ge
• 20 kg of modified natural-Ge BEGe (Canberra) 

detectors in hand (33 detectors UG).



Assembled detector unit and string

Electroformed
Copper

PTFE

PFA + fine Cu
coaxial cable

String Assembly

Front-End Elec.



Front-end board

Epoxy

Shipping
Restraint Feedback Resistor

FET Spring Clip

Clean Au+Ti traces on 
fused silica, amorphous 
Ge resistor, FET mounted 
with silver epoxy, EFCu + 
low-BG Sn contact pin



Signal and HV Connections

• Signal connectors reside on top of cold plate.
• In-house machined from vespel. Axon’ pico co-ax cable.
• Low background solder and flux.

• HV connection done at detector unit.
• Small `fork’ is clamped to HV ring.

• Tension between radio-purity constraints and connection robustness.
• Ongoing R&D to improve performance.



Top of cold plate

Vespel connectors

• HV cables are run from vacuum feed-
through to detector

• Connections made in the glove box 



Modules

PM in glove box

• Prototype Module Run complete.
• Module 1 cryostat with enriched detectors. Now 

inside shield.
• Started cooling May 2015

Photo: M. Kapust

Module 1

Prototype Module



enrGe detector mass

• Mean detector 
mass = 840g

• 29.7kg of enriched 
detectors 
underground

• 35 detectors



enrGe detector energy resolution

• Comparison of 
measurements done 
at ORTEC and 
SURF within the 
vendor cryostat. All 
are better than 
specification.



Pulse shape discrimination: A/E

• Natural BEGe
detector in 
Prototype Cryostat



Ge detector PSD in Module 1

208Tl DEP (single site 
events) fixed at 90%

208Tl SEP (multi-site 
events) reduced to 
<10%



Demonstrator simulations

• 5 year run
• 30kg 87% enrGe
• 92% fiducial
• 90% livetime
• 108 kg-yr



DEMONSTRATOR background model

• Based on achieved 
assay or upper limit 
and simulations



Module 1 status

• May 2015
• Prior to cool-down 28 of 29 detectors showed good baselines
• Efforts to seal with low-background parylene gaskets unsuccessful, switch to Kalrez® o-

rings for initialcommissioning. Investigating additional alternate low-background seals
• June 2015

• In shield, with 23 of 29 detectors operating. Non working detectors — signal connector 
(3), HV connection (1), leakage current (1), HV or front end (1)

• Inner electroformed copper shield not installed (machining underway), outer poly 
shield, partially installed

• Commissioning (completed in July), calibration, background runs.



Module 1 Improvements - Fall 2015

• During Oct.-Nov. we are performing planned improvements to Module 1. 
• Install inner Cu shield: Will decrease background contribution from outer Cu shield and Pb by 

factor of about 10.
• Replace Kalrez O-rings in cryostat: These o-rings would contribute to our background. 

Replacement will be either parylene or PTFE.
• Kalrez: Th ~ 2000-4000 ppt. Expect about 80 c/ROI t y.
• Parylene: Th ~ 200 ppt, and uses much less mass. Requires a custom form for fabrication that 

is being fabricated. Expect about 0.3 c/ROI t y.
• PTFE: very effective seal, gasket material being assayed.

• Crossarm Shielding: Being added to decrease background contributions from electronics-
breakout box region.

• Repair non-operating detectors and upgrade cables: 
• Repairing non-operating detectors (cable connection, HV connection, LMFE replacement, …)
• Will replace all cube-to-cold plate signal cables with cables having improved connectors.
• Vacuum feedthroughs are difficult to connect/disconnect; internal connections are fragile and 

easy to miss-wire.  Have improved D-sub connectors.



Summary

• Assembly and construction proceeding at Sanford Davis Campus laboratory.
• Based on assays, material backgrounds projected to meet cleanliness goals.
• Successful reduction and refinement of enrGe with 98% yield. 
• Electrofomed copper completed at SURF and PNNL.
• AMTEK (ORTEC) produced 35 detectors, 29.7 kg, from the enrGe. All are underground at SURF.
• Shield nearly complete.
• Module 1, in-shield running from June – Sept. 2015.  Improvements underway. Scheduled for 

shield reinstallation in Dec. 2015
• Module 2 construction and assembly proceeding.  Scheduled to start commissioning in 2016.
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