

Ge detectors at ultra-low temperature for DM search SuperCDMS, CRESST, EDELWEISS

Klaus Eitel, KIT Center Particle and Astroparticle Physics, KCETA

www.kit.edu

DM search principles in a nutshell

decent approximation for most "standard searches":

spherical diffuse DM halo (with small substructures) with Maxw.-Boltzm.-like velocity distribution

Ge crystals at T=20mK:

phonons $\rightarrow E_{recoil}$; ionisation $\rightarrow PID$

"revised" perspective → low mass WIMPs

4

SuperCDMS

SuperCDMS Ge detctors

SuperCDMS iZIP – 600g Ge

Z1

Z2

Z3

Z4

Z5

Z6

7

SuperCDMS highlight I

CRESST-II phase 2

CRESST-II phase 2 to CRESST-III phase 1

EDELWEISS

Surface event rejection with the *Fully Inter-Digitized* (FID) electrode readout design

Surface event rejection with the *Fully Inter-Digitized* (FID) electrode readout design

calibration with γ /n-sources

n calibrations with AmBe γ calibrations with ¹³³Ba Ionisation Yield **Ionisation Yield** 1.4 1.2 1 0.8 0.6 0.6 0.4 0.4 0.2 0.2 FID (411000 γ) 0 250 Recoil energy [keV] Recoil energy [keV]

more than 400.000 γ 's γ suppression factor <6x10⁻⁶ <1 "NR" for every 100k γ 's (20-200keV) 90% CL signal region $Q = 0.16 E_r^{0.18}$ from <10 to 200keV (detection efficiency below 20keV)

P. Di Stefano et al., ApP14 (2001) 329 O. Martineau et al., NIMA 530 (2004) 426 A. Broniatowski et al., PLB 681 (2009) 305

The EDELWEISS shielding concept

FID800 detector in copper casing

open shielding with cryostat & 300K electronics

2014/2015 data for WIMP search

8 months of physics data 2014/2015 with 24 x FID800 detectors

Low mass WIMP search:

- blinded ROI
- 8 detectors with good baselines and low trigger thresholds
- homogeneous data set
- analysis threshold in heat:
 4x FID800 @ 1.0 keVee
 4x FID800 @ 1.5 keVee*

*1 keVee ≈ 2.4 keVnr

582 kg.days (fiducial) (EDELWEISS-II: 113 kg.days) sensitivity for WIMPs in [4,30] GeV

Days since July 22nd

2014/2015 data for WIMP search

8 months of physics data 2014/2015 with 24 x FID800 detectors

Low mass WIMP search:

- blinded ROI
- 8 detectors with good baselines and low trigger thresholds
- homogeneous data set
- analysis threshold in heat:
 4x FID800 @ 1.0 keVee
 4x FID800 @ 1.5 keVee*

*1 keVee ≈ 2.4 keVnr

582 kg.days (fiducial) (EDELWEISS-II: 113 kg.days) sensitivity for WIMPs in [4,30] GeV

EDELWEISS status: improved low-mass WIMP sensitivity

- data taking 07/2014 04/2015
- blind analysis
- 8 detectors with 1keV_{ee}/1.5keV_{ee} threshold
- 582 kg·day (fiducial) exposure
- boosted decision tree (BDT) & profile LHD

For each detector:

- one BDT distribution for each WIMP mass
 [4, 5, 6, 7, 10, 15, 20, 30] GeV
- backgrounds normalized to expected # of evts
- BDT cut optimized before unblinding

For all 8 detectors in BDT selected cut window:

mχ	N_bkgd expected	N_bkgd observed	p-value (stat only)
5 GeV	6.14	9	0.17
20 GeV	1.35	4	0.10

heat-only events

bulk gammas

EDELWEISS status: improved low-mass WIMP sensitivity

EDELWEISS-III perspective

- Poisson limits w/o background subtraction
- preliminary 90% C.L. exclusion limit for spin-independent WIMP-nucleon scattering: 4.6 x 10⁻⁴⁰ cm² @ 5 GeV 6.2 x 10⁻⁴⁴ cm² @ 30 GeV
- \rightarrow factor 40 improvement @ 7 GeV & new data down to 4 GeV
- cross checks with 2d profile likelihood analysis ongoing and in good agreement
- post-unblinding checks ongoing
- "high energy analysis" coming soon

Current run:

- DAQ resumed in June 2015
- 23 FID800 installed (12 new)
- 1 FID200 for "High-Voltage" R&D (Neganov-Luke amplification)

R&D on HEMT

to lower ionization threshold down to $\sigma_{ion} = 100 \text{ eV}$ R&D on heat sensors and HV (Luke-Neganov) goal $\sigma_{heat} = 100 \text{ eV}$ and reduce recoil threshold R&D to reduce heat-only events

voltage-assisted heat amplification aka Neganov-Luke mode

Heat signal amplitude: H = GE, E = deposited energy from an impinging particle

 $G = (1+qU/\epsilon)$ is the heat gain.

example :

U = 180V \rightarrow heat gain G for γ interactions (ϵ =3 eV/e.h. pair) : G = 61

charge transport in Ge at T<1K

understanding charge collection: amplitude & shape (risetime)

using a 200g n-type HP Ge crystal in planar mode, but separate readout (A,B,C,D)

signal investigation for Ge in NL-mode

A. Broniatowski, LTD16, Grenoble

signal investigation for Ge in NL-mode

signal investigation for Ge in NL-mode

Issues for further investigations:

- Choice of biasing conditions for optimal heat measurements: planar vs. veto configurations.
- Detector response to low-E evts.
- Energy resolution (especially: dependence on site of energy deposition).

A. Broniatowski, LTD16, Grenoble

➤ EURECA cooperation with SuperCDMS → joint facility at SNOLAB (2019++) with common tower design for different detector technology (SuperCDMS, CRESST, EDELWEISS)

SuperCDMS/EURECA

38

- common cryogenic infrastructure
- space for ~400kg of modular detectors
- compatible interface with tower design
- common cabling & readout electronics
- > 1st phase: 50kg SCDMS + 50kg EURECA

KIT mockup of tower

K. Eitel | Ge detectors at ultra-low temp | GDT Symposium Ringberg | Oct 19, 2015

conclusion and outlook

Ge detectors at ultra-low T for DM search:

> low bias mode: E_{thr} ~ 500eV with full e/n discr.
 > high bias (NL) mode: E_{thr} ≤ 50eV_{ee}
 > parameter region 1GeV < m_γ < 10GeV testable

surface bgd rejection under investigation

next generation: SNOLAB joint infrastructure

Comparison with direct detection

Malik, CM et al arXiv:1409.4075

 EFT limit overestimates at high mass/underestimates at low mass

Christopher McCabe GRAPPA - University of Amsterdam

EFT operators

Name	Operator	Coefficient
D1	$ar{\chi}\chiar{q}q$	m_q/M_*^3
D2	$ar{\chi}\gamma^5\chiar{q}q$	im_q/M_*^3
D3	$ar{\chi}\chiar{q}\gamma^5 q$	im_q/M_*^3
D4	$ar{\chi}\gamma^5\chiar{q}\gamma^5q$	m_q/M_*^3
D5	$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$	$1/M_{*}^{2}$
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
D8	$ar{\chi}\gamma^{\mu}\gamma^{5}\chiar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_*^2$
D9	$\bar{\chi}\sigma^{\mu u}\chi\bar{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{lphaeta}q$	i/M_*^2
D11	$\bar{\chi}\chi G_{\mu u}G^{\mu u}$	$lpha_s/4M_*^3$
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i \alpha_s / 4 M_*^3$
D13	$ar{\chi} \chi G_{\mu u} ilde{G}^{\mu u}$	$i \alpha_s / 4 M_*^3$
D14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$

Name	Operator	Coefficient
C1	$\chi^\dagger \chi ar q q$	m_q/M_*^2
C2	$\chi^\dagger \chi ar q \gamma^5 q$	im_q/M_*^2
C3	$\chi^\dagger \partial_\mu \chi \bar q \gamma^\mu q$	$1/M_{*}^{2}$
C4	$\chi^\dagger \partial_\mu \chi \bar{q} \gamma^\mu \gamma^5 q$	$1/M_{*}^{2}$
C5	$\chi^{\dagger}\chi G_{\mu u}G^{\mu u}$	$\alpha_s/4M_*^2$
C6	$\chi^\dagger \chi G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i \alpha_s / 4 M_*^2$
R1	$\chi^2 ar q q$	$m_q/2M_*^2$
R2	$\chi^2 ar q \gamma^5 q$	$im_q/2M_*^2$
R3	$\chi^2 G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/8M_*^2$
R4	$\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i\alpha_s/8M_*^2$

Goodman et al arXiv:1008.1783

DD: scattering off u and d Monojet: coupling to all quarks