Crystal Growth and Detector Development for Underground Experiments

DE-FG02-10ER46709 and CUBED

Dongming Mei The University of South Dakota

10/20/2015

Project Objectives

- The objectives:
 - Reduce impurity level from ~10¹⁴/cm³ to ~10¹⁰/cm³
 - Achieve impurity levels of the grown crystals at ~(1-3) x10¹⁰/cm³
 - Grow crystals with diameter of 7 cm and up to 10 cm
 - Fabricate planar detectors with the grown crystals
- Activities:
 - Improving zone-refining methods in order to obtain an impurity level of ~10¹⁰/cm³,
 - Growing large detector-grade crystals for the ton scale Majorana, CDEX, and large scale SuperCDMS experiments,
 - Automating the growth process,
 - Comprehensive characterization of all grown crystals, and
 - Developing new types of detectors with the grown crystals,

Milestones in Zone Refining

• Two Stages

- Start with graphite boat to remove AI from an impurity level of ~10¹⁴/cm³ to ~10¹²/cm³
- Continue with quartz boat to remove AI, B and P from an impurity level of ~10¹²/cm³ to ~10¹⁰/cm³

Achievements

- Consistently produced germanium ingots to an impurity level of ~10¹¹/cm³
- Narrowed a variety of parameters down to one
 - High-purity synthetic quartz boat is needed
 - ~High-purity quartz boat is purchased
 - Achieved ~10¹⁰/cm³ impurity level as expected
- Published a paper on the zone refining method

Zone Refining

$$|N_A - N_B| = \sum_i C_i \times (1 - (1 - k_{eff}) \times \exp(-k_{eff} \times \frac{L}{\Delta L}))^n$$

 $|N_A - N_B|$: Net impurity level; C_i: the level of Impurity species; k_{eff}: the effective segregation coefficient; L: the length of the ingot; ΔL : the width of the melt: n: the number of passes

Impurity Components

Grow a Crystal with Zone-Refined Ingot

 $|N_A - N_B|$: The net impurity; C_i: the level of impurity species; k_{eff}: the effective coefficient; $\therefore fine$ mass ratio of a grown crystals

Milestones in Crystal Growth

- Large-size detector grade crystal growth:
 - In this year, grew large detector-grade crystal with impurity level of ~10¹⁰/cm³
 - Size: 6-10 cm in diameter
 - Dislocation density: 300 7000 etch pits/cm²

Achievements:

- Every growth has a portion of detector-grade with a grown crystal
- Increase the portion of detector-grade per grown crystal from 10% to over 30%
- Automation of crystal growth
- Published a paper for large-size crystal growth

Requirements

- Mobility
 - Electrons and holes mobility must be greater than 25,000 cm²/Vs
 - Detector-grade requires > 35,000 cm²/Vs
- Impurity
 - 1 to 3 x10¹⁰/cm³
- Dislocation density
 - 300 10,000/cm²
- Sizes
 - 5 to 10 cm in diameter
 - 3 to 7 cm in length

Impurity Control – Current Status

Impurity Control – Target (01/2015-03/2016)

$$k_{eff} = \frac{k}{k + (1 - k) \exp(-Rd/D)}$$

k: segregation coefficient in equilibrium R: growth rate, δ : the thickness of the growth interface, D: diffusion coefficient

Growth Strategy

The key is to understand K_{eff} vs growth rate for gallium and phosphorus

Effective Segregation Coefficients vs Growth Rate

10/20/2015

Milestones in Characterization

- Fully understanding of the zone-refined ingots and the grown crystals
 - Electronic properties measurements with Hall Effect
 - Optical properties for dislocation density
 - The origin of impurity with PTIS
- Achievements:
 - A few hundreds of samples have been measured
 - Understood the relation between mobility, resistivity, and impurity at lower temperature than 77 K
 - Developed a few papers for publications

Detector Development

- Goals
 - Learn how to make contacts for planar detectors
 - Fabricate planar detectors
- Progresses
 - Several planar detectors have been made
 - Measurements of leakage current to gain feedback
 - Improvement of cryostat

Highlighted Products

Collaborate with LBNL

A week-long visit at LBNL, August, 2015

- Ge crystals, USD
- A-Ge surface, LBNL

Plan for Next

- Zone refining to continue achieving ~10¹⁰/cm³
 - Use ultra-pure synthetic quartz boat
- Crystal growth to achieve 60% detector-grade per grown crystal
 - Use ultra-pure synthetic quartz tube for enclosure
- Continue fully understanding of the grown crystals
 - Publish a few papers
- Fabricate planar detectors
 - Spatter machine for making contacts
- R&D on new type of detectors
 - Beyond G2 experiments

Summary

- Verification from TAMU, LBNL, and Tsinghua
- Grow crystals for increasing production per growth
- Develop new detectors with LBNL, MPI, and Tsinghua University an the PIRE collaboration
- Push a ton-scale germanium-based neutrinoless double-beta decay experiment
- Held a workshop on germanium detectors and technologies in September 2014