CDEX-1A Data Analysis

CDEX-1A Experimental Setup

Data Analysis

Summary & Prospect

Wei Zhao CDEX collaboration Tsinghua University

AX-PLANCK-INSTITUT

1

Experimental Setup: Shielding

UNIVERSITAT TUBINGEN 2015 Symposium of the Sino-German CJPL GDT Cooperation

Experimental Setup: Detectors

- 1. HPGe technology
- Ikg-scale p-type point-contact Ge detector (1kg-PPCGe)

Large-mass "prototype" (994 g)

Low energy threshold (< 500 eVee)

- 2. Active shielding technology
- Nal(Tl) used as anti-Compton detector

<u>low energy threshold (~ 10 keV)</u> <u>"bucket"-like: enclosed the cryostat of PPCGe</u>

Experimental Setup: DAQ

Would NaI-AC detector introduce more background or suppress background?

- phase I: 1kg-PPCGe
 Aug. Sep., 2012
- phase II: 1kg-PPCGe + Nal(TI)

- Sep., 2012 Aug 2013 - po

Aug.2013 - now

Data Analysis: Data Quality Monitoring

<u>Step 1:</u> Check data quality of the datasets:

- Trigger rate
- Trigger efficiency
- Ratio of Real time to live time
- Noise level→
 dispersion of the
 baselines of SA_{6,12}

Data Analysis: Energy Calibration

<u>Step 2: energy calibration $\rightarrow Q_p$ of SA₆</u>

Data Analysis: Data Selection

Data Analysis: Efficiency Corrections

Step 4: correct the efficiencies to get real spectrum

✓ Trigger efficiency:

Source or background or pulser-simulation events

- ~ 100% @ T>320 eVee;
- ✓ Energy-independent selection:

TT, Ped, AC Cuts: Random Trigger events (T=0)

✓ Energy-dependent selection: PSD Cut

Source AC^+ events ($\varepsilon = F(T)$)

✓ Energy-dependent selection – B/S Cut

surface richer: ²⁴¹Am(60keV),⁵⁷Co(122keV),

bulk richer: ¹³⁷Cs(662keV), ⁶⁰Co(1173,1332)

Q. Yue et al., Phys. Rev. D 90, 091701(R) (2014)

Data Analysis: Limits on WIMPs

Step 5: subtract known backgrounds and set limits on WIMPs

Q. Yue et al., Phys. Rev. D 90, 091701(R) (2014)

Summary & Prospect

- Improve an order of magnitude in the sensitivities compare to CDEX-1 2013;
- Part of the allowed regions at WIMP mass of 6 20 GeV are probed and excluded;
- Accumulated more than 1 kg.year data, deeply understanding background sources is on-going and "annual modulation" of this dataset is processing.

Thank you / 谢谢 !

Appendix I: Cuts

Basic Cuts: physical events VS electronic noise & spurious signals (i) timing information: TT Cut

(ii) pulse shape: energy-independent & energy-dependent Cuts

Appendix I: Cuts

Basic Cuts: physical events VS electronic noise & spurious signals (i) timing information: TT Cut

(ii) pulse shape: energy-independent & energy-dependent Cuts

Appendix II: B/S efficiency

(1). B/S selection efficiency ($\epsilon_{\text{BS}},\,\lambda_{\text{BS}})$

$$B = \varepsilon_{BS} \cdot B_0 + (1 - \lambda_{BS}) \cdot S_0$$
$$S = (1 - \varepsilon_{BS}) \cdot B_0 + \lambda_{BS} \cdot S_0.$$

$$\begin{split} \mathbf{B}_{0} &= \frac{\lambda_{\mathrm{BS}}}{\epsilon_{\mathrm{BS}} + \lambda_{\mathrm{BS}} - 1} \cdot \mathbf{B} + \frac{\lambda_{\mathrm{BS}} - 1}{\epsilon_{\mathrm{BS}} + \lambda_{\mathrm{BS}} - 1} \cdot \mathbf{S} \\ \mathbf{S}_{0} &= \frac{\epsilon_{\mathrm{BS}} - 1}{\epsilon_{\mathrm{BS}} + \lambda_{\mathrm{BS}} - 1} \cdot \mathbf{B} + \frac{\epsilon_{\mathrm{BS}}}{\epsilon_{\mathrm{BS}} + \lambda_{\mathrm{BS}} - 1} \cdot \mathbf{S}. \end{split}$$

calibrated by various gamma sources:

²⁴¹Am(59.5 keV), ⁵⁷Co(122keV), ¹³⁷Cs(662keV), ⁶⁰Co(1173keV, 1132keV)

Appendix II: B/S efficiency

(2). (ϵ_{BS} , λ_{BS}) induced systematic uncertainties:

Energy bin $AC^- \otimes B_0$ and errors $(kg^{-1} keVee^{-1} day^{-1})$	0.475-0.575 keVee $4.09 \pm 1.47[\text{stat}] \pm 0.87[\text{sys}]$ $= 4.09 \pm 1.71$	$\begin{array}{r} 1.975 - 2.075 \text{ keVee} \\ 4.22 \pm 0.97[\text{stat}] \pm 0.27[\text{sys}] \\ = 4.22 \pm 1.01 \end{array}$
(I) Statistical uncertainties (combined):	1.47	0.97
(i) Uncertainties on calibration $(\varepsilon_{BS}, \lambda_{BS})$:	0.32	0.08
(ii) Derivation of $(\varepsilon_{BS}, \lambda_{BS})$ -corrected bulk rates:	1.43	0.97
(II) Systematic uncertainties (combined):	0.87	0.27
(i) Rise-time cut value τ_0	0.27	0.12
(ii) Fiducial mass	0.05	0.05
(iii) Normalization range (3–5 keVee)	0.07	0.01
(iv) $(B_0, S_0) = (B, S)$ at normalization	0.10	0.10
(v) Choice of discard region	0.30	0.06
(vi) Source location	0.28	0.19
(vii) Source energy range and spectra	0.72	0.12

TABLE I.	The various contributions	s to the total error of AC ⁻	\otimes B ₀ at threshold and	at a typical high energy bin
			\mathbf{I}	

Appendix III

Quenching Factor (QF)

