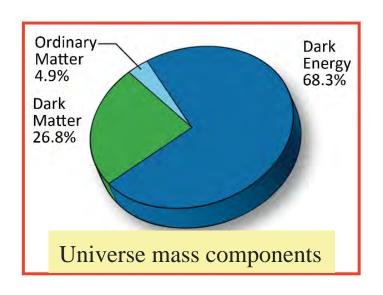
Final Symposium of the Sino-German GDT Cooperation, Ringberg

Plans on Ge-76 double beta decay in China: A perspective in future

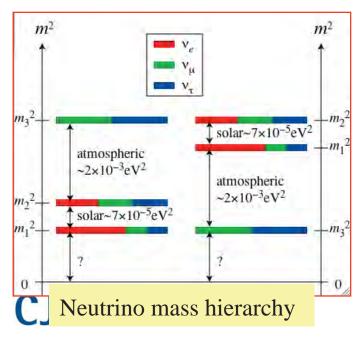
Zhi ZENG/Qian Yue Tsinghua University Oct. 23, 2015

中国锦屏地下实验室 China Jinping Underground Laboratory

Outline

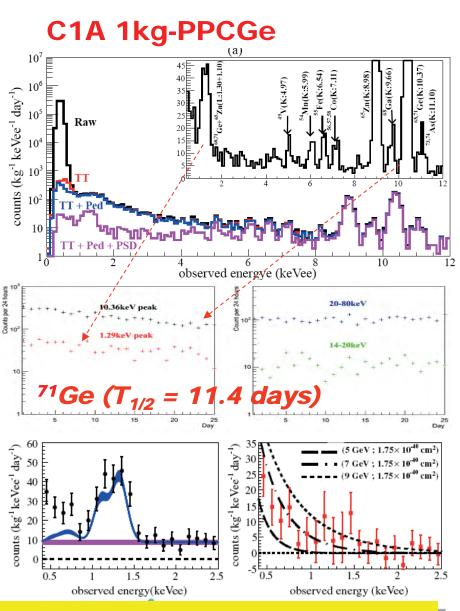

- CDEX-1T for DBD
- R&D in Tsinghua University
- International co-operation
- Summary

I. CDEX-1T for DBB

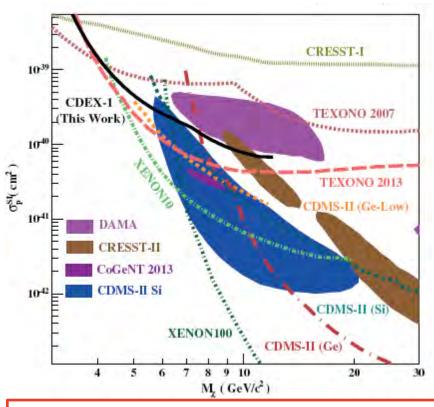


CDEX-1T for DBD

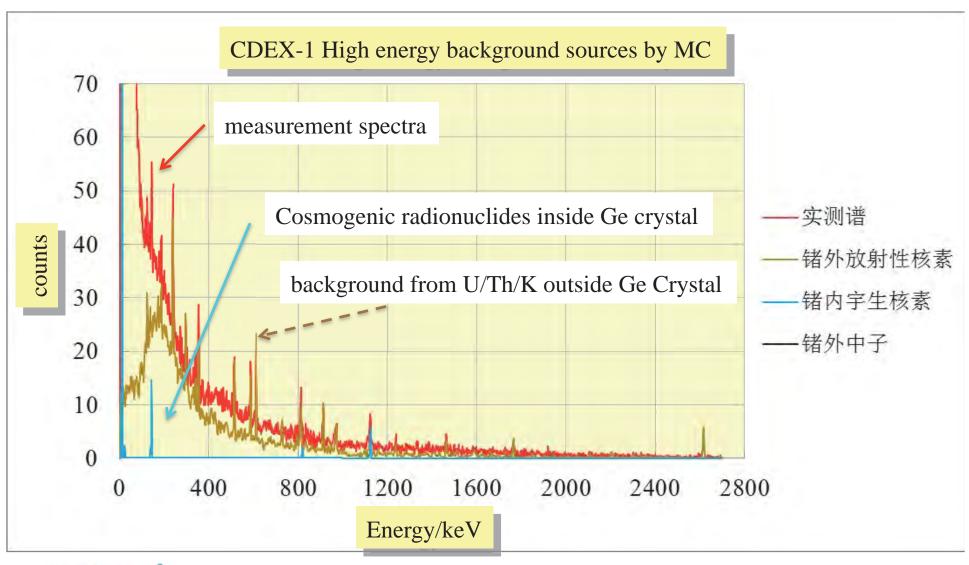
Ge detector for dark matter:


- Ionization detector
 --- CDEX, CoGeNT
- Ionization and phonon detector
 --- Super(CDMS),
 - **EDELWEISS(EURECA)**

Ge detector for DBD:


- Ge-76 DBD source and target
- Ionization detector
- H-M, GERDA and Majorana
- A new player: CDEX

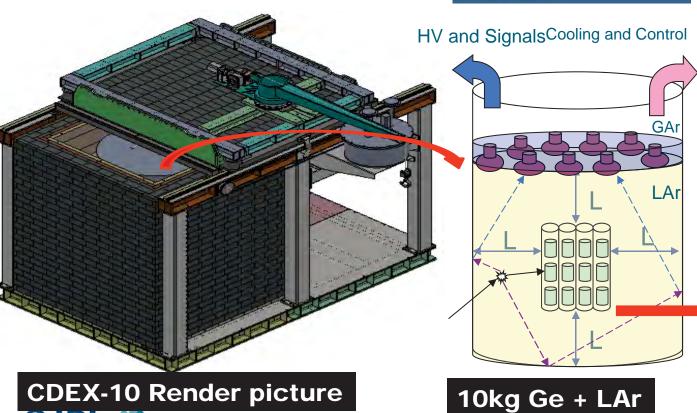
CDEX-1 experiment


Energy threshold ~400eV!

W. Zhao et al., Phys. Rev. D 88, 052004 (2013);

- The first dark matter physical result from mainland of China!
- The lowest energy threshold for PCGe detector in the world.

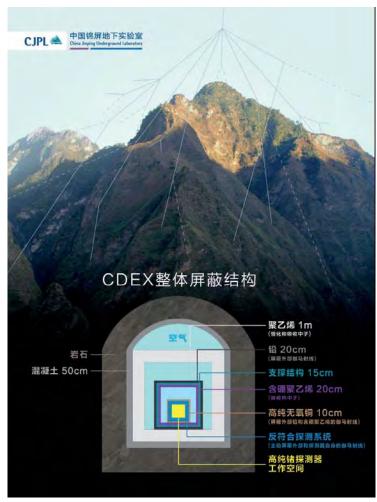
CDEX-1 High energy background

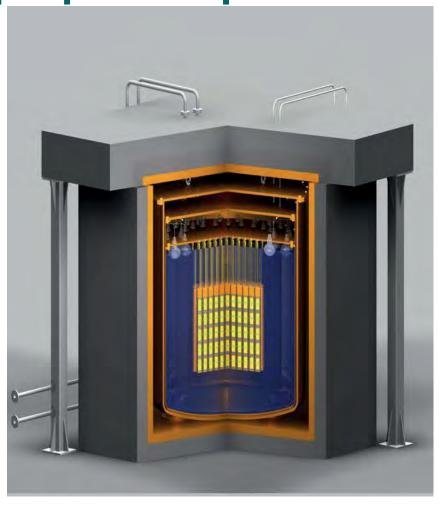


CDEX-10 Preliminary Test

features:

- ✓ PCGe Array by module
- ✓ LAr shielding&Veto System



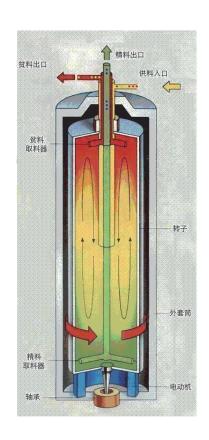


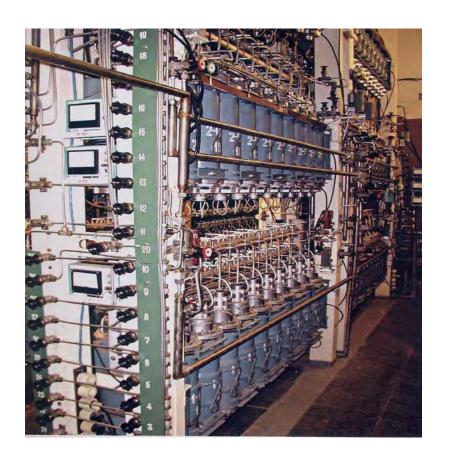
CDEX-1T

---Towards a multi-purpose experiment

Goals: Both Dark Matter & Double Beta Decay

CDEX-1T proposal for CJPL-II





II. R&D in Tsinghua

⁷⁶Ge isotope can be enriched by centrifuges.

currently conditions in Tsinghua

MAT-281 MS

Once separation by single machine

MAT-253 MS

Supply and control system of cascade

1. ⁷⁶Ge Enrichment

Element	isotopes Abundance (%)			
氙(Xe)	Xe-124 >99			
氙(Xe)	Xe-129	>90		
氙(Xe)	Xe-136	>99.5		
钨 (W)	W-186	>98		
碲(Te)	Te-130	>99		
锇 (Os)	Os-192	>99		
锇 (Os)	Os-187	>15		
硅 (Si)	Si-28	>99		

At the past years, some stable isotopes has been enriched by centrifuges in Tsinghua.

- Example for ²⁸Si enrichment:
 - SiHCl₃ as service substance
 - large scale production;
 - important raw material for Si crystal growth

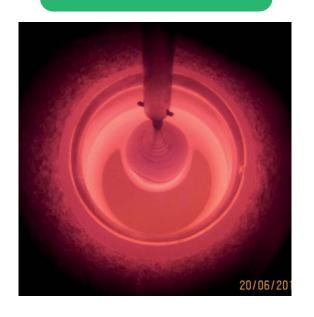
molecular weight	molecular forma	% in SiHCl ₃		
134	H ²⁸ Si ³⁵ Cl ³⁵ Cl ³⁵ Cl	39.732		
135	H ²⁹ Si ³⁵ Cl ³⁵ Cl ³⁵ Cl	2.025		
136	H ³⁰ Si ³⁵ Cl ³⁵ Cl ³⁵ Cl	1.331		
136	H ²⁸ Si ³⁵ Cl ³⁵ Cl ³⁷ Cl(3)	38.616		
137	H ²⁹ Si ³⁵ Cl ³⁵ Cl ³⁷ Cl(3)	1.968		
138	H ³⁰ Si ³⁵ Cl ³⁵ Cl ³⁷ Cl(3)	1.294		
138	H ²⁸ Si ³⁵ Cl ³⁷ Cl ³⁷ Cl(3)	12.511		
139	H ²⁹ Si ³⁵ Cl ³⁷ Cl ³⁷ Cl(3)	0.638		
140	H ³⁰ Si ³⁵ Cl ³⁷ Cl ³⁷ Cl(3)	0.419		
140	H ²⁸ Si ³⁷ Cl ³⁷ Cl ³⁷ Cl	1.351		
141	H ²⁹ Si ³⁷ Cl ³⁷ Cl ³⁷ Cl	0.069		
142	H ³⁰ Si ³⁷ Cl ³⁷ Cl ³⁷ Cl	0.045		

- Requirements of service substance for centrifugalization:
 - Heat stable while temperature ~570K
 - molecular weight > 70
 - Saturated Vapor pressures at normal atmospheric temperature > 665 Pa.
- ICP-MS analysis method of this service substance developing.

- Germanium tetrafluoride(GeF₄) as service substance for ⁷⁶Ge for centrifugalization:
 - a noncombustible, strongly fuming gas with a garlic odor
 - Molecular weight 148.6
 - Saturated Vapor pressures 4 atm in -15 °C

1. ⁷⁶Ge Enrichment

- Problems about GeF₄centrifugalization :
 - high pressure gas(~20atm) in 20 °C;
 - strong corrosiveness
- GeF₄ 1-2-1 cascade once separation:

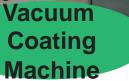

abundance	⁷⁰ Ge (%)	⁷² Ge (%)	⁷³ Ge (%)	⁷⁴ Ge (%)	⁷⁶ Ge (%)
light cut	34.11	35.31	7.26	21.83	1.50
raw material	20.54	27.73	7.74	36.25	7.75
heavy cut	4.99	18.59	8.01	53.40	15.02

• 86% ⁷⁶Ge production by a small scale cascade can be used in future

2. Germanium crystal growth for CDEX-1T

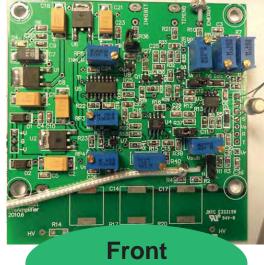
Zone refining machine

Czochralski machine



Cutting & Polishing

3. PCGe detector for CDEX-1T



Sputtering Device

Implant Accelerator

-electronics

4. low-background Electroform-Copper production

- Prototype device
 - Stainless steel mandrel
 - DC power supply

Output: 5V, 500A, adjustable

T and pH monitor

Ref to Hao Ma's presentaiton.

III. International co-operation

- Continuous communication of CDEX, GERDA and Majorana after Symposium of Sino-German GDT Cooperation;
- Discuss a appropriate way to develop some common technics.

III. Summary

- In the future, CDEX would focus on DM detection experiment, and some R&D in CDEX would be carried on for DBB.
- R&D, like Ge-76 Enrichment, Ge crystal growth, Ge detector fabrication, low-background front-end electronics development, EF-Copper production in CJPL, large UL space and LN/LAr shielding system, are carrying on.
- Discuss with HPGe related scientists in the world to find whether and when a new DBD
 CIPCOLLABORATION would be setup.

Thanks!

