Measurements of the Collins asymmetries for kaons and pions in e⁺e⁻ annihilations at BABAR

Alessandra Filippi

INFN Torino

On behalf of the BABAR Collaboration

ISMD2015, Wildbad Kreuth (Germany), 4-9 Oct 2015

Outline

- Introduction
 - The fragmentation process and its description
 - Transverse degrees of freedom: the Collins effect
- Analysis overview
 - Method
 - BABAR data: data selection and background evaluation
 - Asymmetries extractions, corrections and study of systematic uncertainties
- Results
- Conclusions

Fragmentation processes in e⁺e⁻ annihilation

- Fragmentation: hard quarks/gluons from a virtual photon (Z⁰) radiate partons which combine into colorless hadrons
- Description via fragmentation functions
 - Universal functions
 - Cannot be calculated by perturbative QCD
 - To be determined by experiments
- For the factorization theorem:

$$\frac{d\sigma}{dz}(e^+e^- \to hX) = \sum_q \sigma(e^+e^- \to q\overline{q}) \cdot \left[D^h_q(z,Q^2) + D^h_{\overline{q}}(z,Q^2)\right]$$

 Parton spins and transverse degrees of freedom in the parton motion provide important information for the determination of these probability functions

Collins fragmentation function

- Collins function: related to the probability that a transverse polarized quark will fragment into a spinless (or unpolarized) hadron $q^{\uparrow} \rightarrow hX$
- For the fragmentation of a polarized quark q[↑] into spinless hadrons (π, K) one has:

$$D_1^{q\uparrow}(z, \mathbf{P}_{\perp}; s_q) = D_1^q(z, \mathbf{P}_{\perp}) + \frac{P_{\perp}}{zM_h} H_1^{\perp q}(z, P_{\perp}) \mathbf{s}_q \cdot (\mathbf{k}_q \times \mathbf{P}_{\perp})$$

 H_1^{\perp} polarized fragmentation function or Collins FF (J.C. Collins, NPB396, 161 (1993)) Part dependent on a spin-orbit coupling

• Leads to a cosine dependence in the angular distribution of the final state particles: Collins effect

The Collins effect

- The Collins function embeds the correlation between the fragmenting quark spin and the transverse momentum of the produced hadron
- Chiral-odd function
- Collins effect: azimuthal modulation
 - observable in SIDIS and e⁺e⁻ annihilation

SIDIS: unpolarized lepton beam off transversely polarized target

- HERMES, COMPASS (on d)
- Spin direction known
- Non-zero Collins effect but entangled with transversity
- Convolution of two chiral odd functions, one of them must be measured independently

$$\sigma \propto \sin(\phi_h + \phi_s) \cdot h_1(x_B) \otimes H_1^{\perp}(z_1)$$

Collins effect in $e^+e^- \rightarrow q\bar{q}$

- Golden channel: no hadrons in the initial state
- Quark spin unknown
- Two quark spins parallel
- Quark transverse spin component: $\sim \sin^2 \theta$
- Correlation between hadrons in opposite jets:

$$\begin{array}{c}
110 \text{ GeV}^{2} \quad \phi_{1} \quad \phi_{1} \\
e^{+} \quad e^{-} \\
\hline \text{or} \quad & & & \\
\hline \text{or} \quad & & & \\
\hline \text{q} \quad & & & \\
\hline \text{PRL96} (2006), 232002 \\
\end{array}$$
arXiv:1507.06824

$$e^+e^- \rightarrow q\overline{q} \rightarrow h_1^{\pm}h_2^{\mp(\pm)}X \qquad (q=u,d,s; h=\pi,K)$$

$$\sigma \propto \cos(\phi_1 + \phi_2) H_1^{\perp h1}(z_1) \otimes H_2^{\perp h2}(z_2)$$

Azimuthal modulation wrt quark spin direction

Final states with particle pairs with like (L) and unlike (U) signs

Collins asymmetries for $\pi\pi$ PR**D90**, 052003 (2014)

Collins asymmetries for KK & K π

Ti S Olivina

First measurement ever Fragmentation of the s quark to strange/non strange mesons

೧² ′

Favored vs disfavored fragmentation functions

- Favored FF: the parent quark matches a valence quark of the produced hadron $\mathbf{u} \rightarrow \pi^+$, $\mathbf{d} \rightarrow \pi^-$, $\mathbf{s} \rightarrow \mathbf{K}^-$, ...
- **Disfavored**: no match $\mathbf{u} \to \pi^-$, $\mathbf{d} \to \pi^+$, $\mathbf{s} \to \pi^{\pm}$, ...

The **BABAR** experiment at PEP-II, SLAC

EMC 6580 Csl(Tl) crystals

e+ (3.1GeV)

Drift Chamber

40 layers

Silicon Vertex Tracker

5 layers, double sided

strips

Excellent PID

THRUST REFERENCE FRAME (RF12) •

SECOND HADRON RF (RF0)

- all quantities in e⁺e⁻ center of mass
- qq direction approximated by the thrust
 axis
- Angles defined wrt thrust beam plane
 - θ_{th}: angle between e⁺e⁻ and thrust axes
 - $\phi_{1,2}$: azimuthal angles between $p_{th1(h2)}$ and the scattering plane

$$\sigma \approx 1 + \frac{\sin^2 \theta_{th}}{1 + \cos^2 \theta_{th}} \frac{\cos(\phi_1 + \phi_2)}{D_1(z_1)\overline{D}_1(z_2)} \frac{H_1^{\perp}(z_1)\overline{H}_1^{\perp}(z_2)}{D_1(z_1)\overline{D}_1(z_2)}$$

- Consider just one track in a pair (h2)
- θ_2 : angle between e^+e^- and P_{h2}
- φ₀: angle between the plane formed by P_{h2} and e⁺e⁻, and the P_{h1} component transverse to P_{h2}

$$\sigma \approx 1 + \frac{\sin^2 \theta_{th}}{1 + \cos^2 \theta_{th}} \cos(2\phi_0) \mathcal{F}\left[\frac{H_1^{\perp}(z_1)\overline{H}_1^{\perp}(z_2)}{D_1(z_1)\overline{D}_1(z_2)}\right]$$

Analysis strategy

Goal: simultaneous measurement of Collins asymmetry for $\pi\pi$, π K and KK pairs

- 1. Event and track selection: identification of inclusive events with hadron pairs in opposite jets wrt to thrust axis
- 2. Particle identification and misidentification probabilities
- 3. Extraction of normalized raw distributions of the azimuthal angles ϕ_{α} (2 RFs) for L, U and C pairs
- 4. Calculation of ratios of normalized distributions: U/L & U/C
- 5. Extract Collins asymmetries corrected for K/π misidentification, background contributions, ...
- 6. Estimation of systematic effects

Results

- A^{UL} and A^{UC} in 4x4 (z_1, z_2) bins ($z_h = 2E_h/Vs$) in both RF12 and RF0
 - z₁, z₂ studied ranges: [0.15,0.2], [0.2,0.3], [0.3,0.5],[0.5,0.9] GeV

1. Event and track selection

Event selection

- >2 charged tracks
- 2 jets topology: event shape T > 0.8
- $|\cos \theta_{thrust}| < 0.6$
- E_{vis} > 11 GeV
 - Rejects 2γ, τ⁺τ⁻, ISR/qq̄g events with one γ/jet along the beam line
- E_{γ} < 2 GeV

Track selection

- μ^{\pm}/e^{\pm} events removed
- Events in the $\tau^+\tau^-$ region excluded
- K and π in the DIRC acceptance region
- K/π fractional energy z:
 0.15 < z <0.9 GeV
- Opening angle wrt to thrust: 45°
- Q_t < 3.5 GeV/c (transverse momentum of the virtual photon)

Bhabha/µ⁺µ⁻

2. Particle identification

- Identification of π/K via energy loss through ionization in DCH and Cherenkov radiation in DIRC
- Charged particles selected in the detector acceptance: 0.45 < θ_{lab} < 2.46 rad
- Minimal misidentification of electrons (<2%) and muons (<4%)
- Large identification efficiency for kaons (~80%) and pions (~90%)
- Estimation through MC of the π/K pairs misidentification probabilities
 - They enter in the definition of the asymmetries:

 $\xi^{h'h',reconstructed}$ $\xi^{hh,generated}$

$$\begin{split} & \zeta_{KK}{}^{KK} \sim 86\% - 91\% \quad \zeta_{K\pi}{}^{KK} \sim 1.5\% - 5\% \quad \zeta_{\pi\pi}{}^{KK} \sim 0.01\% - 0.1\% \\ & \zeta_{KK}{}^{K\pi} \sim 7.6\% - 13\% \quad \zeta_{K\pi}{}^{KK} \sim 78\% - 90\% \quad \zeta_{\pi\pi}{}^{K\pi} \sim 3.5\% - 4.5\% \\ & \zeta_{KK}{}^{\pi\pi} \sim 0.3\% - 1.3\% \quad \zeta_{K\pi}{}^{KK} \sim 7.3\% - 16\% \quad \zeta_{\pi\pi}{}^{\pi\pi} \sim 95\% - 97\% \end{split}$$

3. Measurement of Collins effect: raw asymmetries

- In both the RF's (α = 12,0)
- Measure the normalized azimuthal distributions of inclusive hadron pairs produced in two opposite jets, with
 - Same charges (like L)
 - Opposite charges (unlike U)
 - Sum of the two (C)

$$R_{\alpha} = \frac{N(\phi_{\alpha})}{\langle N_{\alpha} \rangle} = a + b \cos \phi_{\alpha}$$

b ~ convolution of the 2 Collins FF

ArXiv:1506.05864

- If no Collins effect is present: no difference between different charge combinations
 - As in uds-MC (JETSET) where no simulation of Collins is inserted
 - Visible modulations due to detector acceptance, gluon radiations & other effects
 - Effects not related to Collins asymmetries are charge independent
- If different: Collins effect
 - Different contributions of fav and dis FF for L, U, C pairs

4. Double ratios

- To reduce acceptance effects: ratios of Unlike/Like sign (or Unlike/Charged) hadron pairs
- MC: small deviations from zero, almost consistent with a flat distribution
- Data: sizeable modulation visible, still a cosine distribution

$$\frac{R_{\alpha}^{U}}{R_{\alpha}^{L(C)}} = \frac{N^{U}(\phi_{\alpha})/\langle N^{U}(\phi_{\alpha}) \rangle}{N^{L(C)}(\phi_{\alpha})/\langle N^{L(C)}(\phi_{\alpha}) \rangle}$$
$$\Rightarrow B_{\alpha}^{UL(UC)} + A_{\alpha}^{UL(UC)} \cos \phi_{\alpha}$$

A contains the Collins + other radiative effects

Study of MC asymmetries

 Small modulations (<< real data) observed also in MC samples, even though not directly simulated

- Largest source of asymmetry: ISR photon emission
- Limited requiring
 E_{vis} > 11 GeV in the
 KK sample
- Affects both RF12 and RF0 evaluations
- Corrections to be included as systematic contributions

5. Asymmetries extraction

- Goal: simultaneous extraction of asymmetries for ππ, Kπ, KK in each interval of (z₁, z₂), corrected for backgrounds and particle misidentification
- The measured asymmetries, obtained from a fit of the double ratio distributions, may be decomposed in the sum of uds Collins + background contributions:

• But, due to non-negligible particle misidentification:

Background contributions

- Data include pairs coming from:
 - uds signal events
 - cc events
 - BB events (small, mainly at low z)
 - $\tau^+\tau^-$ events (important at high z)

- MC-data difference assigned in each bin as systematic error
 A^{BB} = 0
 - $\tau^+\tau^-$ contribution negligible in simulations: $A^{\tau+\tau^-} = 0$
 - Sizeable contribution from charm source: >30%

Background contribution: charm

- Charm contribution introduces azimuthal modulations due both to fragmentation and weak decays
- Estimation of effect in a D*-enhanced control sample, bin-by-bin
 - Mostly from $c\overline{c}$ + a part from $B\overline{B}$
 - $D^{*\pm} \rightarrow D^0 \pi^{\pm}$ + 4 decay modes of D^0
 - $D^0 \rightarrow K\pi$
 - $D^0 \rightarrow K3\pi$
 - $D^0 \rightarrow K\pi\pi^0$
 - $D^0 \rightarrow K_s \pi \pi$

$$A_{\alpha}^{D^*} = f_{charm} \cdot A_{\alpha}^{charm} + (1 - f_{charm} - f_B) A_{\alpha}$$

A^{charm} are very small – slightly negative

6. Asymmetry dilution: effect of thrust axis

- RF12: thrust axis taken in place of qq axis (unknown)
- Approximation: introduces a dilution of the measured asymmetry
- Correction through MC studies
 - Several values of asymmetries are injected
 - Checked the difference between generated (qq) and reconstructed (thrust) modulations

- Effect seen only in RF12
 - Corrections increasing with z, $1.3 \rightarrow 2.3$
- Same correction factors applied to all data samples

Systematic uncertainties

- Several sources of systematic uncertainties
 - Larger effects
 - MC uncertainties
 - PID efficiencies
 - Fit procedures
 - Dilution evaluation
 - Cuts on E_{vis}
 - Minor effects:
 - Beam polarization
 - Asymmetry fluctuations in different data taking periods
 - Couplings between Collins asymmetry and detector effects (2nd order)
 - Higher harmonics in the fits

• ...

- Absolute uncertainties at 1-2% level, relevant in higher z bins
- Maximum relative total uncertainty: ~10%

Results: A₁₂ vs (z₁, z₂)

ArXiv:1506.05864 submitted for publication

A^{UC} and A^{UL} significantly ≠0 in all the channels

Consistent z₁ vs z₂ symmetry

correlated asymmetries (same exp. samples)

- Similar magnitude of the asymmetries in KK, K π , $\pi\pi$
- KK asymmetries almost consistent with zero at low energies
- Increase of the asymmetry with z, more pronounced for U/L
- $A^{UC} < A^{UL}$
- A^{UL} KK, $K\pi > A^{UL} \pi\pi$ at large z: strange quark contribution

Results: A₀ vs (z₁, z₂)

ArXiv:1506.05864 submitted for publication A^{UC} and A^{UL} significantly ≠0 in all the channels Consistent

> z₁ vs z₂ symmetry

correlated asymmetries (same exp. samples)

- A₀ < A₁₂
- Similar magnitude of the asymmetries in KK, K π , $\pi\pi$
- Increase of the asymmetry with z
- A^{UL} KK large: related to strange quark favored FF

$\pi\pi$ consistency check

- Comparison of new ππ asymmetry evaluations with first BABAR published data (PRD90 (2014))
 - Different kinematic regions, (z₁, z₂) intervals: rescaling needed by a factor depending on $\theta_{\rm th}$

- Results after rescaling are consistent
- confidence in new results for KK and $K\pi$

$\pi\pi$ asymmetries vs transverse momenta

- First measurement of Collins asymmetries vs p_t in e⁺e⁻ annihilation
 @ Q² ~ 110 GeV² (time-like region)
- $A^{UL}, A^{UC} \neq 0$
- agreement with theoretical expectations

- **A**^{UC} < **A**^{UL}
- A₀ < A₁₂
- Interesting trend of A₀ vs p_{t0}

Summary and conclusions

- BABAR measured Collins asymmetries for charged hadron pairs in two-jets events, in two different reference frames
- The A^{UL} asymmetries are increasing with fractional energies for $\pi\pi$, π K and KK, the same cannot be concluded for A^{UC} for KK pairs
 - $-\pi\pi$ results consistent with Belle results and also first new results from BESIII
- First results for kaons

Much better constraints can be provided to theory for the determination of the fragmentation functions of strange quarks

- Final goal: global fit of SIDIS data + e⁺e⁻ data to extract both the Collins fragmentation functions and transversity PDF and improve the knowledge on hadron structures
- New results submitted to Phys Rev., ArXiv:1506.05864

Summary and conclusions

- BABAR measured Collins asymmetries for charged hadron pairs in two-jets events, in two different reference frames
- The A^{UL} asymmetries are increasing with fractional energies for $\pi\pi$, π K and KK, the same cannot be concluded for A^{UC} for KK pairs
 - $-\pi\pi$ results consistent with Belle results and also first new results from BESIII
- First results for kaons

Much better constraints can be provided to theory for the determination of the fragmentation functions of strange quarks

- Final goal: global fit of SIDIS data + e⁺e⁻ data to extract both the Collins fragmentation functions and transversity PDF and improve the knowledge on hadron structures
- New results submitted to Phys Rev., ArXiv:1506.05864

THANK YOU FOR YOUR ATTENTION!

backup slides

Global fits for FF extraction from data

- Global analyses determine simultaneously the Collins function and the transversity PDF based on
 - SIDIS data
 - e⁺e⁻ annihilation data

- Larger number of fractional energy intervals
- First measurement ever of Collins asymmetries vs pion transverse momentum

Extraction of asymmetries

The uds Collins asymmetries for the three samples are the six unknowns of the following system of six equations

$$\begin{cases} A_{KK}^{meas} = F_{uds}^{KK} \cdot (\xi_{KK}^{(KK)} A_{KK} + \xi_{K\pi}^{(KK)} A_{K\pi} + \xi_{\pi\pi}^{(KK)} A_{\pi\pi} + F_{\pi\pi}^{(KK)} A_{\pi\pi} + F_{\pi\pi}^{KK} \cdot (\xi_{KK}^{(KK)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(KK)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(KK)c\bar{c}} A_{\pi\pi}^{ch}) \\ A_{K\pi}^{meas} = F_{uds}^{K\pi} \cdot (\xi_{KK}^{(K\pi)} A_{KK} + \xi_{K\pi}^{(K\pi)} A_{K\pi} + \xi_{\pi\pi\pi}^{(K\pi)} A_{\pi\pi}) + F_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} A_{\pi\pi}^{ch}) \\ A_{\pi\pi}^{meas} = F_{uds}^{\pi\pi} \cdot (\xi_{KK}^{(\pi\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(\pi\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(\pi\pi)c\bar{c}} A_{\pi\pi}^{ch}) \\ A_{\pi\pi}^{meas} = F_{uds}^{\pi\pi} \cdot (\xi_{KK}^{(\pi\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(\pi\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(\pi\pi)c\bar{c}} A_{\pi\pi}^{ch}) \\ A_{\pi\pi}^{meas} = f_{uds}^{\pi\pi} \cdot (\xi_{KK}^{(KK)D^*} A_{KK} + \xi_{K\pi}^{(\pi\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(KK)D^*} A_{\pi\pi}) \\ F_{c\bar{c}}^{c\bar{c}} \cdot (\xi_{KK}^{(KK)c\bar{c}-D^*} A_{KK}^{ch} + \xi_{K\pi}^{(KK)D^*} A_{K\pi} + \xi_{\pi\pi}^{(KK)D^*} A_{\pi\pi}) + f_{c\bar{c}}^{K\bar{c}} \cdot (\xi_{KK}^{(K\pi)c\bar{c}-D^*} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)D^*} A_{K\pi} + \xi_{\pi\pi}^{(K\pi)D^*} A_{\pi\pi}) + f_{c\bar{c}}^{c\bar{c}} \cdot (\xi_{KK}^{(K\pi)D^*} A_{KK} + \xi_{K\pi}^{(\pi\pi)D^*} A_{K\pi} + \xi_{\pi\pi}^{(K\pi)D^*} A_{\pi\pi}) + f_{c\bar{c}}^{c\bar{c}} \cdot (\xi_{KK}^{(\pi\pi)D^*} A_{KK} + \xi_{K\pi}^{(\pi\pi)D^*} A_{K\pi} + \xi_{\pi\pi}^{(\pi\pi)D^*} A_{\pi\pi}) + f_{c\bar{c}}^{c\bar{c}} \cdot (\xi_{KK}^{(\pi\pi)D^*} A_{KK} + \xi_{K\pi}^{(\pi\pi)D^*} A_{K\pi} + \xi_{\pi\pi}^{(\pi\pi)D^*} A_{\pi\pi}) + f_{c\bar{c}}^{c\bar{c}} \cdot (\xi_{KK}^{(\pi\pi)c\bar{c}-D^*} A_{KK}^{ch} + \xi_{K\pi}^{(\pi\pi)c\bar{c}-D^*} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(\pi\pi)c\bar{c}-D^*} A_{\pi\pi}^{ch}) + f_{c\bar{c}}^{c\bar{c}} \cdot (\xi_{KK}^{(\pi\pi)c\bar{c}-D^*} A_{KK}^{ch} + \xi_{K\pi}^{(\pi\pi)c\bar{c}-D^*} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(\pi\pi)c\bar{c}-D^*} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(\pi\pi)c\bar{c}-D^*} A_{\pi\pi}^{ch}) + f_{c\bar{c}}^{c\bar{c}} \cdot (\xi_{KK}^{(\pi\pi)c\bar{c}-D^*} A_{KK}^{ch} + \xi_{K\pi}^{(\pi\pi)c\bar{c}-D^*} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(\pi\pi)c\bar{c}-D^*} A_{\pi\pi}^{ch}) + f_{c\bar{c}}^{c\bar{c}} \cdot (\xi_{KK}^{(\pi\pi)c\bar{c}-D^*} A_{KK}^{ch} + \xi_{K\pi}^{(\pi\pi)c\bar{c}-D^*} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(\pi\pi)c\bar{c}-D^*} A_{\pi\pi}^{ch}) + f_{c\bar{c}}^{c\bar{c}} \cdot (\xi_{KK}^{(\pi\pi)c\bar{c}-D^*} A_{KK}^{ch} + \xi_{K\pi}^{(\pi\pi)c\bar{c}-D^*} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(\pi\pi)c\bar$$

uds sample

c enhanced sample

Asymmetry binning and MC corrections

- The Collins effect for pions is analyzed in bins of
 - Fractional energy: $6x6(z_1, z_2)$
 - Transferred momentum: $4x4 (pt_1, pt_2) (9 in p_{t0})$
 - Polar angle: $cos\theta_{th} or cos\theta_2$

- The simulated data show the same dependence
 - Detector acceptance effects
 - Bin-by-bin correction needed
 - Source of systematic uncertainties

Comparison of *BaBar* vs Belle asymmetries for pions

- Same Q² (110 GeV²):
 - BaBar: 468 fb⁻¹ 😨
 - Belle: 547 fb⁻¹ 🖉
 - PR**D86**, 039905(E)(2012)
- RFO
 - Good agreement
- RF12
 - Large discrepancy in the last two z bins
 - Different correction applied for the dilution due to thrust axis
 - Different maximum momentum selection

p_t and z dependence of pion asymmetries

- Study in RF12
- $4(z_1, z_2) \otimes 3(p_{t1}, p_{t2})$ intervals
- Test of the factorization of Collins functions
- Tool to access p_t vs z correlations

$\pi\pi$ asymmetries vs polar angle

• Angular dependence studied after integration over fractional energies and transverse momenta

- $A_{12} \sim \cos(\phi_1 + \phi_2) \langle \sin^2\theta \rangle / \langle 1 + \cos^2\theta \rangle$
- Linear fit: intercept consistent with zero
- Agreement with first Belle results (PRD86, 039905 (2012))

- $A_0 \sim \cos(2\phi_0) \langle \sin^2\theta \rangle / \langle 1 + \cos^2\theta \rangle$
- Linear fit: intercept is non-zero
- Worse estimation of the qq
 direction in RF0
- Agreement with first Belle results (PRD86, 039905 (2012))