Supersymmetry searches in ATLAS and CMS in hadronic final states

Sascha Caron
(Nikhef and Radboud University Nijmegen)
This presentation

Searches for SUSY

Knowledge of QCD

Multijet topologies,
Boosted objects,
High mass, non-back-to-back topologies, Initial state radiation

Multijet topologies, parton shower and resummations.
Outline

• Part 1: **Concept** of hadronic SUSY searches
• Part 2: Recent analysis as an **example**
• Part 3: **Overview** of hadronic SUSY searches and limits
• Part 4: A quick look at 13 TeV...
• Part 5: Summary for **discussion**
Production rate

If R-Parity is conserved then SUSY particles are pair produced.
Where are we going?

Followed prescriptions in 1206.2892 [hep-ph]

- $\sqrt{s} = 14\,\text{TeV}$
- $pp \to \tilde{g}\tilde{g}$
- $pp \to \tilde{q}\tilde{q}^*$
- $pp \to \tilde{t}\tilde{t}^*$
- $pp \to \tilde{\chi}_1^\pm \tilde{\chi}_2^0$

Goal for 30 fb-1
Goal for 300 fb-1
Goal for HL-LHC
Analysis model - control regions

- Measure number of events in control selections
- Predict number of events in signal region via a fit to control regions
- Important: Test model and transfer functions (e.g. by alternative control regions or methods)
Analysis model - control regions

Experimental uncertainties:
- Trigger efficiency
- Jet energy scale and resolution
- Lepton energy scale and efficiency
- E_T^{miss} soft component
- b-tagging
- Luminosity
- pileup modelling

Theory uncertainties:
- Generator modelling (μ_F, μ_R, ME/PS matching, α_s scale choice when possible - otherwise compare generators)
- PS uncertainties (typically compare Pythia and Herwig)
- PDF choice

- Measure number of events in control selections
- Predict number of events in signal region via a fit to control regions
- Important: Test model and transfer functions (e.g. by alternative control regions or methods)
Large range of jet multiplicities needed
Large range of jet multiplicities needed

Compressed “Monojets”:

Anti-tag on low 30 GeV P_T jets

\Rightarrow Needs description of low Jet multiplicities and missing transverse momentum object, relying on Initial state radiation

Typical decay: 2-6 jets

Typical signals

Long decay 7-10 jets
Large range of jet multiplicities needed

Compressed “Monojets”:

Anti-tag on low 30 GeV P_T jets

\Rightarrow Needs description of low Jet multiplicities
and missing transverse momentum object, relying on Initial state radiation

Typical decay: 2-6 jets

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Signal region</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_T^{miss} [GeV] ></td>
<td>2j</td>
</tr>
<tr>
<td>P_T^{jet1} [GeV] ></td>
<td>160</td>
</tr>
<tr>
<td>P_T^{jet2} [GeV] ></td>
<td>130</td>
</tr>
<tr>
<td>P_T^{jet3} [GeV] ></td>
<td>60</td>
</tr>
<tr>
<td>P_T^{jet4} [GeV] ></td>
<td>40</td>
</tr>
<tr>
<td>$\Delta\phi(jet_{1,2,3}, E_T^{miss})_{min}$ ></td>
<td>0.4</td>
</tr>
<tr>
<td>$\Delta\phi(jet_{1,2,3}, E_T^{miss})_{min}$ ></td>
<td>0.2</td>
</tr>
<tr>
<td>W candidates</td>
<td>–</td>
</tr>
<tr>
<td>$E_T^{miss}/\sqrt{H_T}$ [GeV$^{1/2}$] ></td>
<td>8</td>
</tr>
<tr>
<td>E_T^{miss}/m_N^{jj} ></td>
<td>–</td>
</tr>
<tr>
<td>m_{eff}^{incl} [GeV] ></td>
<td>800</td>
</tr>
</tbody>
</table>

Long decay 7-10 jets

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Signal region</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>P_T^{jet} [GeV] ></td>
<td>50</td>
</tr>
<tr>
<td>N_{jet}</td>
<td>= 8</td>
</tr>
<tr>
<td>N_{b-jet}</td>
<td>$0 \ 1 \ \geq 2$</td>
</tr>
<tr>
<td>$E_T^{miss}/\sqrt{H_T}$ [GeV$^{1/2}$] ></td>
<td>4</td>
</tr>
<tr>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>P_T^{jet} [GeV] ></td>
<td>50</td>
</tr>
<tr>
<td>N_{jet}</td>
<td>≥ 8</td>
</tr>
<tr>
<td>M_T^{jj} [GeV] ></td>
<td>> 340 and > 420 for each case</td>
</tr>
<tr>
<td>$E_T^{miss}/\sqrt{H_T}$ [GeV$^{1/2}$] ></td>
<td>4</td>
</tr>
</tbody>
</table>
Part 2: Example analysis

Let’s have a detailed look at a recent search for coloured SUSY by CMS to illustrate the background determination.
Recent searches with M_T2

Two signal regions:

a) Jets, high pt, high M_T2

b) Search for mass peak with Higgs \(\rightarrow b\bar{b} \)

\[M_{T2}(m_X) = \min_{\not{p}_T^{X(1)} + \not{p}_T^{X(2)} = \not{p}_T^{\text{miss}}} \left[\max \left(M_{T1}^{(1)}, M_{T1}^{(2)} \right) \right]. \]

M_T2 is generalization of transverse mass concept for 2 invisible particles

Definition of signal regions and their backgrounds and subsequent division in HT and Etmiss
Recent searches with M_T2

• Each of these regions is examined in M_T2 (Model-dependent test)

• Example M_T2 distributions for medium and high sum of jet pt (H_t)
Recent searches with M_T2

Example of background determination QCD multijets:
- QCD dominated region at low minimal delta phi between jet and MET
- Assumption is that transfer factor r (from control to signal region) is described by this parameterization:

$$r(M_{T2}) \equiv \frac{N(\Delta\phi_{\text{min}}>0.3)}{N(\Delta\phi_{\text{min}}<0.2)} = \exp(a - b M_{T2}) + c \quad \text{for } M_{T2} > 50 \text{ GeV}.$$

The parameters a and b are obtained from a fit to data in the region $50 < M_{T2} < 80$ GeV, see next slide, procedure validated with simulated QCD multijet events
Recent searches with M_{T2}

r is fixed to a constant (conservatively) for high M_{T2}.

Various uncertainties on method considered

Note that QCD multijet background is small at high M_{T2}
Recent searches with \(M_{T2} \)

W+ jets background and top background Mainly stemming from “lost” lepton events, 40% are taus

1. Determined for each signal region by re-versing the zero lepton requirement and asking 1 lepton and small transverse mass \(< 100 \text{ GeV} \)

2. A “lost lepton” factor is applied to determine the expected number of background events in signal region taking into account the lepton efficiencies/acceptance “per signal region”. *Uncertainties e.g. by tag-and-probe method.*

Z (\(\nu \nu \)) + jets background is estimated by selecting a control sample of \(\gamma + \text{jets} \) events and then subtracting the photon momentum in the computation of all the relevant event quantities, e.g. \(M_{T2} \). *Z and gamma coupling expected to behave constant for \(p_{T}_Z > M_Z \) (difference modeled with MC simulation)*
Recent search with M_T2

Results: Many many signal regions (6 plots from many):

- N_f=2, N_B=0
 - Low H_T
 - Multijet
 - Lost lepton
 - Z(\nu\bar{\nu})+jets
 - Data

- N_f=2, N_B=0
 - Medium H_T
 - Multijet
 - Lost lepton
 - Z(\nu\bar{\nu})+jets
 - Data

- N_f\geq 6, N_B=0
 - Low H_T
 - Multijet
 - Lost lepton
 - Z(\nu\bar{\nu})+jets
 - Data

- N_f\geq 6, N_B=0
 - Medium H_T
 - Multijet
 - Lost lepton
 - Z(\nu\bar{\nu})+jets
 - Data

- N_f\geq 6, N_B=0
 - High H_T
 - Multijet
 - Lost lepton
 - Z(\nu\bar{\nu})+jets
 - Data
Recent searches with M_T2

• Higgs searches requires two b-tags close in delta R in mass(bb) bins
• Shape of mass(bb) is taken from low M_T2 regions since no correlation between M_T2 and mass(bb) is expected from simulation
Recent search with M_T2

Here is an example from Higgs signal region
Signal is gluino with Higgs decays..

Interpretation: >40 signal regions considered
and tested against SUSY predictions.

Regions are combined into a likelihood
function and exclusion limits are calculated
for various different models...
Limits and Signal Regions

Examples: Limits on gluino pair production for different gluino decays.

Longer decay chain limits problematic, first limit on gluinos with Higgs decays.
Run-1 data Overview

• Recent result from ATLAS 2015 summary papers
• Goals: **Combination, complementarity, coverage** in the landscape of minimal SUSY (MSSM)

- Summary of ATLAS constraints in the pMSSM, 1508.06608, Accepted by JHEP
- Inclusive squark/gluino searches, 1507.05525, Accepted by JHEP
- Third generation squarks (direct production), 1506.08616, Submitted to EPJC
Complementarity: 1st and 2nd generation squarks

- Let's start with a result:

Note 400 GeV limits for non-degenerated Squarks even in simplest decay chain

Sensitivity of different methods and search channels needed already for simplest decay scenario!
Background and signal regions

“Monojets”: Z→neutrinos and W→lepton neutrino dominant

Medium (2-6) jets:
Z+jets and top pairs

Many (7-10) jets:
QCD, top pairs

Signal regions in ATLAS are typically cut-and-count and limits derived by “best signal region” only (CMS usually combines signal regions)
Coverage beyond simplified models

- Coverage studies by running >20 run-1 analyses over >300000 MSSM points
- All MSSM points selected to fulfill all worldwide constraints (e.g. on Dark Matter)
Coverage beyond simplified models

Fraction models in gluino-neutralino space (well covered by simplified models)

Most constraining search is 2-6 jets + MET

Fraction of models in $\text{min}(\text{squark})$ vs neutralino space
- Less well covered by simplified models
- Different decays q_L and q_R, different Masses?
- Low mass squarks not excluded yet!
R_p violation multijets

no MET and a huge background from QCD.

2 recent results on this:
(RPV gluino decays -> jets)
(RPV stop -> jets)
R_p violation multijets

no MET and a huge background from QCD.

2 recent results on this:

Interesting searches
- Using large R jets (reclustering of anti-kt jets)
- Using data-driven QCD estimation
R_p violation multijets

no MET and a huge background from QCD.

2 recent results on this:
(RPV gluino decays -> jets)
(RPV stop -> jets)
Run-2

• Various control distribution from ATLAS and CMS well described...even for 7 jets

ETmiss/VHT template (exactly 6 jets) applied to data with exactly 7 jets.

0-lepton 2 jet selection control region
All-hadronic search using M_{T2}

Inclusive search with M_{T2} in bins of H_T, N_j and N_b.

$M_{T2} =$ sTransverse mass, designed for final states with 2 missing particles.

An important background is W or top with missed leptons or taus.

Measure M_{T2} shape in single lepton control sample.

The M_{T2} distribution in the single-lepton control region is compared to (normalized) MC for events passing the baseline selection and having exactly zero (left) or two or more (right) b-tags.
Material for discussion

Run-2 provides 13 TeV center-of-mass:

• If DM particle is at 100 GeV still, likely to expect multiple decay steps (squarks to heavy neutralinos/charginos)
 ➔ Possibly boosted multi-boson decays
 ➔ High jet multiplicities become even more important
 ➔ High boson multiplicities become even more important (maybe 2-3 W/Z/h bosons per event)

• On the other side we should not forget the low mass squarks.... Low jet pt, low MET ➔ precision physics!?
Summary

• Final analyses of 8 TeV data with “highly developed techniques” also for background determination

• Still relying on MCs for **signal** and **background**
 (note that Pdf uncertainties will become important at high susy masses)

• First 13 TeV data

• High jet and boson multiplicities becoming more important for SUSY searches
ATLAS Simulation Preliminary

\[\int L dt = 300, 3000 \text{ fb}^{-1}, \sqrt{s} = 14 \text{ TeV} \]

0-lepton combined

- **ATLAS 20.3 fb^{-1}, \sqrt{s} = 8 \text{ TeV}, 95\% \text{ CL}**
- 95\% CL limit, 3000 fb^{-1}, \langle \mu \rangle = 140
- 95\% CL limit, 300 fb^{-1}, \langle \mu \rangle = 60
- 5\sigma \text{ disc., } 3000 \text{ fb}^{-1}, \langle \mu \rangle = 140
- 5\sigma \text{ disc., } 300 \text{ fb}^{-1}, \langle \mu \rangle = 60

\[\sigma_{\text{bkg}} = 10\% \]
Additional material
All-hadronic search using M_{T2}

Inclusive search with M_{T2} in bins of H_T, N_j and N_b.

M_{T2} = sTransverse mass, designed for final states with 2 missing particles

Another important background is $Z \rightarrow \nu\nu$. Estimate with photon sample, multiplied by Z/γ ratio. Validate this by measuring the $Z \rightarrow \ell\ell$ to γ ratio & validating photon purity measurement.

Left: Ratio between the yields in the $Z \rightarrow \ell^+\ell^-$ control region and the photon control region as a function of M_{T2}. Right: Prompt photon purity in the photon control region as a function of M_{T2}, comparing the results of the template fit to the shower shape and the MC prediction.
Figure 5: Distribution of the M_{T2} variable for data and simulation after requiring the presence of one photon, $N_b = 0$, and the remainder of the inclusive-M_{T2} selection criteria. Events satisfying the low-H_T selection (left), and the medium- and high-H_T selections (right) are shown. For these results, M_{T2} is calculated after adding the photon p_T to the E_T^{miss} vector.
MT_2 systematics

On the search region, and the typical ranges of effect are shown. Sources of uncertainty that change the shape of the \(M_{T2} \) distributions in the inclusive-\(M_{T2} \) analysis or the shape of the \(M_{bb} \) distributions in the \(M_{T2} \)-Higgs search are marked with a cross in the last column.

<table>
<thead>
<tr>
<th>Process</th>
<th>Source/Region</th>
<th>Effect</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multijet</td>
<td>(M_{T2} < 200 \text{ GeV})</td>
<td>10–50%</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(M_{T2} \geq 200 \text{ GeV})</td>
<td>50–100%</td>
<td>—</td>
</tr>
<tr>
<td>Lost-lepton method (sys (\oplus) stat)</td>
<td></td>
<td>10–65%</td>
<td>—</td>
</tr>
<tr>
<td>b-tagging scale factor</td>
<td></td>
<td>—</td>
<td>x</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td></td>
<td>—</td>
<td>x</td>
</tr>
<tr>
<td>Matching scale</td>
<td></td>
<td>—</td>
<td>x</td>
</tr>
<tr>
<td>Renormalization and factorization scales</td>
<td></td>
<td>—</td>
<td>x</td>
</tr>
<tr>
<td>System recoil modelling</td>
<td></td>
<td>—</td>
<td>x</td>
</tr>
<tr>
<td>(Z(\nu\bar{\nu})) + jets and Top</td>
<td>Systematics on (Z(\nu\bar{\nu})/\gamma) ratio ((N_b = 0\text{–1}))</td>
<td>20–30%</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Systematics on (1b/0b) ratio from (Z_{\ell\ell}) ((N_b = 1))</td>
<td>10–75%</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Statistics from (\gamma) + jets data ((N_b = 0\text{–1}))</td>
<td>5–100%</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Simulation ((N_b \geq 2))</td>
<td>100%</td>
<td>—</td>
</tr>
<tr>
<td>(Z(\nu\bar{\nu})) + jets</td>
<td>Integrated luminosity</td>
<td>2.6%</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Trigger efficiency</td>
<td>1%</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Parton distribution functions</td>
<td>5–15%</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>b-tagging scale factor</td>
<td>5–40%</td>
<td>—</td>
</tr>
</tbody>
</table>
Overview plots
<table>
<thead>
<tr>
<th>Model</th>
<th>(\ell^-, \mu^-, \tau^-)</th>
<th>Jets</th>
<th>(E_{\text{miss}}^\gamma)</th>
<th>(L_{\text{int}})</th>
<th>Mass limit</th>
<th>(\sqrt{s} = 7) TeV</th>
<th>(\sqrt{s} = 8) TeV</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSUGRA/CMSSM</td>
<td>0-3 (e^-, \mu^-, \tau^-)</td>
<td>2-10 jets</td>
<td>3/3</td>
<td>Yes</td>
<td>20.3</td>
<td>(q, \bar{q}) 850 GeV</td>
<td>(q, \bar{q}) 850 GeV</td>
<td>1.8 TeV</td>
</tr>
<tr>
<td>(\tilde{g}, \tilde{l})</td>
<td>0</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>100-440 GeV</td>
<td>780 GeV</td>
<td>1.33 TeV</td>
<td>1507.05520</td>
</tr>
<tr>
<td>(\tilde{g}, \tilde{l}) (compressed)</td>
<td>mono-jet</td>
<td>1-3 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>1.26 TeV</td>
<td>1507.05520</td>
</tr>
<tr>
<td>(\tilde{g}, \tilde{l})</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>20.3</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>1.32 TeV</td>
<td>1.6 TeV</td>
<td>1507.05520</td>
</tr>
<tr>
<td>GMSB (I NLS)</td>
<td>1-2 (\tau) + 0-1 (\ell) - 0-2 (\ell)</td>
<td>Yes</td>
<td>20.3</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>1.29 TeV</td>
<td>1.6 TeV</td>
</tr>
<tr>
<td>GGM (bino NLS)</td>
<td>2 (\gamma)</td>
<td>-</td>
<td>Yes</td>
<td>20.3</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>1.34 TeV</td>
</tr>
<tr>
<td>GGM (higgsino-bino NLS)</td>
<td>2 (\gamma)</td>
<td>-</td>
<td>Yes</td>
<td>20.3</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>1.29 TeV</td>
</tr>
<tr>
<td>GGM (higgsino NLS)</td>
<td>2 (\gamma)</td>
<td>2 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>1.29 TeV</td>
</tr>
<tr>
<td>Gravitino LSP</td>
<td>0 (\mu, \tau) mono-jet</td>
<td>Yes</td>
<td>20.3</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>2 (e, \mu) ((\ell^-, \ell^+))</td>
<td>1.34 TeV</td>
<td>1.7 TeV</td>
</tr>
</tbody>
</table>

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1\(\sigma\) theoretical signal cross section uncertainty.
Summary of CMS SUSY Results* in SMS framework

For decays with intermediate mass,

\[m_{\text{intermediate}} = x \cdot m_{\text{mother}} + (1-x) \cdot m_{\text{LSP}} \]

*Observed limits, theory uncertainties not included
Only a selection of available mass limits
Probe "up to" the quoted mass limit