

Measurement of parton shower observables with OPAL

N. Fischer, S. Gieseke, <u>S. Kluth</u>, S. Plätzer, P. Skands, and the OPAL collaboration

Arxiv: 1505.01636

ISMD 2015, Oct 5, 2015

Motivation

- Hot topic: (N)NLO automation in MC
 - Consistent matching to parton shower
 - Parton shower integral component of prediction
 - Parton shower vs LL / NLL / SLL?
- Many new parton shower models
 - Herwig++, Pythia8, Sherpa, VINCIA, ...
- Can we discriminate models with data?
 - Construct special observables in e+e- to hadrons
 4-jet final states

e⁺e⁻ annihilation to hadrons

The OPAL experiment

1989 to 2000 at LEP

Use calibration data taken on the Z peak during LEP 2 (1996-2000) period; 14.7/pb

Best detector and simulations

Ap. Dg>tt

4-jet event selection

Select 4-jet events using Durham iterative jet clustering

$$y_{ij} = 2min(E_{i}, E_{j})^{2}(1 - \cos \theta_{ij})/s$$

Require $y_{43} > 0.0045$

4-jet topology observables

We use four observables after energy ordering the 4 jets, and placing cuts on interjet angles to force 1^{st} jet to recoil against ~collinear 2^{nd} and 3^{rd} jets

$$\theta_{14}$$
: angle between 1^{st} and 4^{th} jet

 $\theta^*: \theta_{24} < \pi/2; \theta^* = \theta_{24} - \theta_{23}$ opening angle difference

 $C_2^{(1/5)}$: 2-point energy correlation double ratio, sensitive to collinear structure

 $\rho = (M_{\rm L}/M_{\rm H})^2: \text{ ratio of hemisphere masses}$ (N. Fischer, S. Gieseke, S. Plätzer, P. Z. Skands, P. Z. Skands, Eur. Phys. J. C74(2014) 2831]

4-jet topology observables

Detector level

OPAL parton shower observables - S Kluth

Hadron (particle) level

OPAL parton shower observables - S Kluth

Modern MC parton showers

- Herwig++ variants
 - q^{~2} ordering, DGLAP splitting, global recoils, LO ME corr.
 - $p_{t,dip}^2$ ordering, CS dipoles, local recoils
 - q² ordering, CS
 dipoles, local recoils,
 less coherence

- Pythia8 variants
 - p_{t,ant}² ordering, antenna
 functions, local recoils
 (VINCIA)
 - m_{ant}² ordering, antenna functions, local recoils (VINCIA)
 - $p_{t,evol}^2$ ordering, DGLAP splitting, local recoils, LO ME corr., ang. veto

All MCs tuned to same LEP1 data using rivet+professor!

$\mathbf{ heta}_{14}$

All MC models agree with data (Herwig++ $p_{t,dip}^{2}$ marginal)

θ^* Asymmetry

All models ok, except Herwig++ q^2 (less coherence)

OPAL parton shower observables - S Kluth

MC ok, except Herwig++ q^2

OPAL parton shower observables - S Kluth

 $\rho = (M_{_{\rm L}}/M_{_{\rm H}})^2$ Asymmetry

d) Asymmetry for ρ , VINCIA, PYTHIA 8

MC models ok, except Herwig++ q², Pythia8 variants slightly better than Herwig++ variants

OPAL parton shower observables - S Kluth

Conclusion

- New observables sensitive to parton shower development measured
- Comparison with modern MC models
 - models broadly ok, coherence needed
 - interesting model differences observed
 - Pythia8/VINCIA with $p_{\rm t}$ based evolution fare best
- Different hadronisation models, would like to repeat with all shower models with same hadronisation model