Early Run 2 Hard QCD Results from the ATLAS Collaboration

XLV International Symposium on Multiparticle Dynamics 04-09 October 2015, Wildbad Kreuth (DE)

Nicola Orlando on behalf of the ATLAS Collaboration

Aristotle University of Thessaloniki and The University of Hong Kong

FUROPEAN SOCIAL

European Union European Social Fund

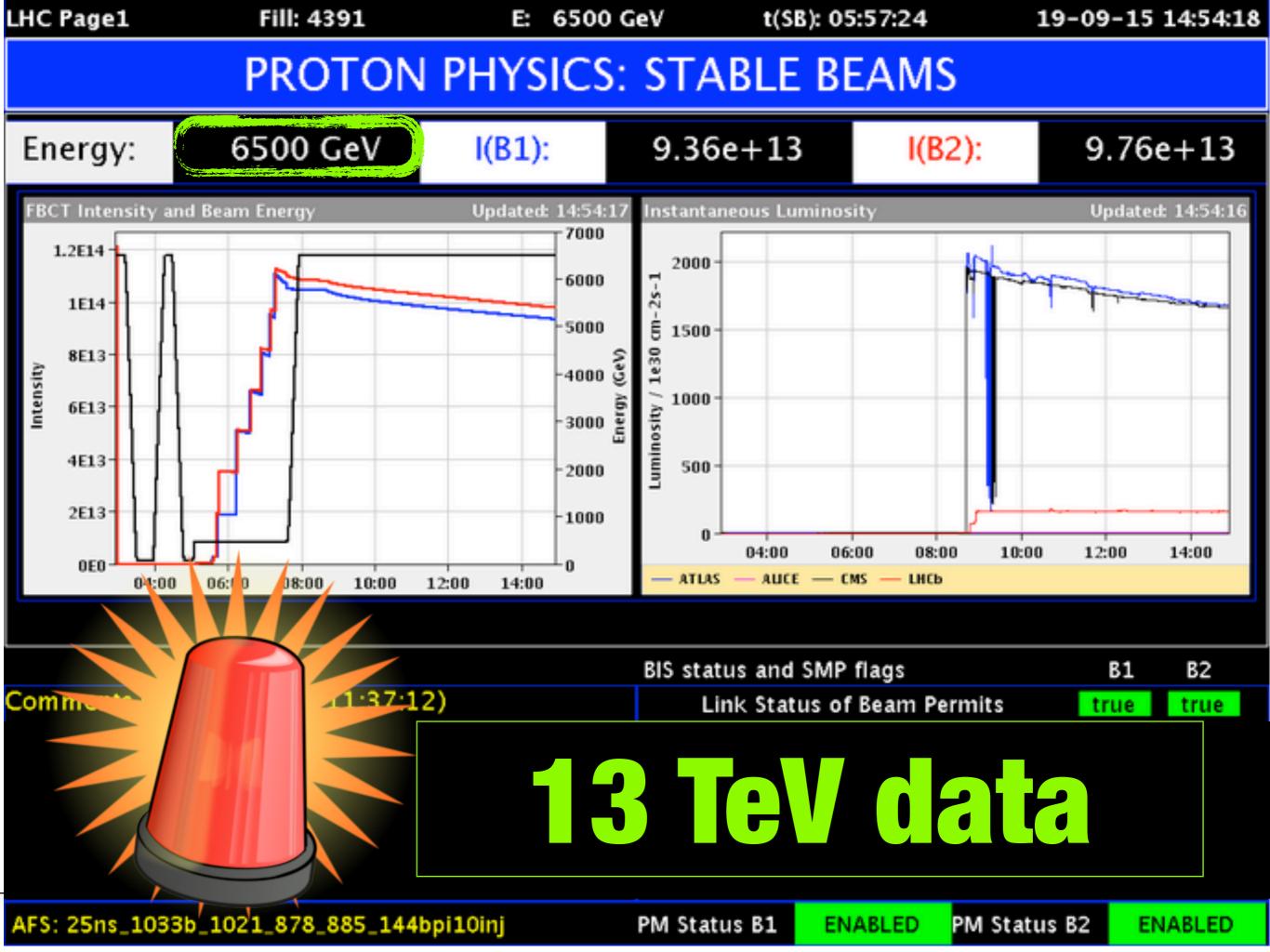
MINISTRY OF EDUCATION & RELIGIOUS AFFAIRS M A N A G I N G A U T H O R I T Y

Co-financed by Greece and the European Union

The triumph of hard QCD in Run 1

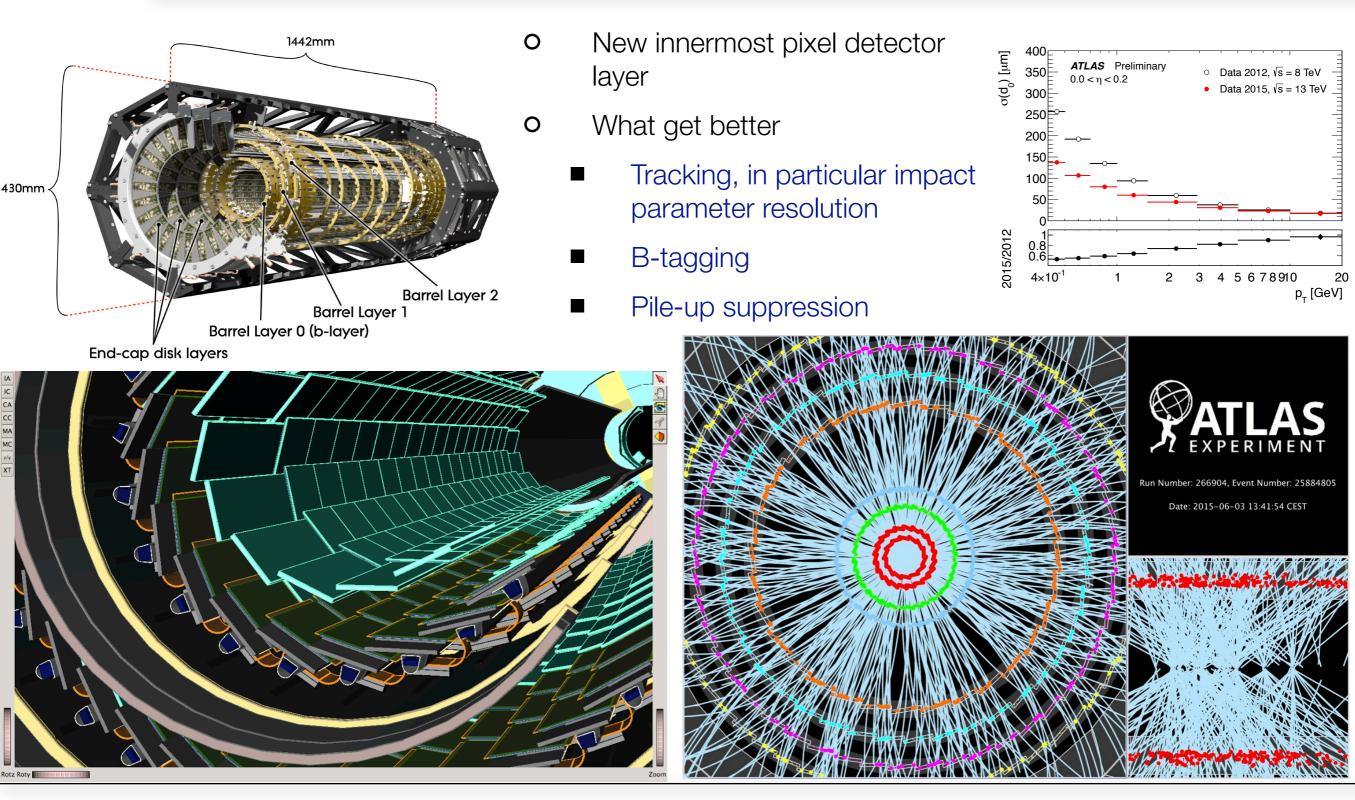
$ \begin{array}{c} \textbf{J} \textbf{L} \textbf{M} \textbf{M} \textbf{M} \textbf{M} \textbf{M} \textbf{M} \textbf{M} M$	pp total	$\sigma = 95.35 \pm 0.38 \pm 1.3 \text{ mb (data)} \\ \text{COMPETE RRpl2u 2002 (theory)}$		۰ ۲	8×10 ⁻⁸	B Nucl. Phys. B, 486-548 (2014	4)
$\frac{ V \le 0, \sqrt{3.0}}{ V } = \frac{1}{10^{3}} \frac{1}{10^{2}} 1$	Jets R=0.4	$\sigma = 563.9 \pm 1.5 + 55.4 - 51.4 \text{ nb (data)} \\ \text{NLOJet++, CT10 (theory)}$	0.1 < <i>p</i> _T < 2 TeV		4.5	arXiv:1410.8857 [hep-ex]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\sigma = 86.87 \pm 0.26 + 7.56 - 7.2 \text{ nb (data)} \\ \text{NLOJet++, CT10 (theory)}$	0.3 < m _{jj} < 5 TeV		4.5	JHEP 05, 059 (2014)	
$\frac{1}{10}$		$\sigma = 94.51 \pm 0.194 \pm 3.726 \text{ nb (data)} \\ \text{FEWZ+HERAPDF1.5 NNLO (theory)}$	4	•	0.035	PRD 85, 072004 (2012)	
$\frac{1}{10^{-6}} \frac{(-22.4 \pm 17.4)2(20,0000)}{(-20.4 \pm 10^{-6})} \frac{1}{10^{-6}} \frac{1}{10^{$		$\sigma = 27.94 \pm 0.178 \pm 1.096 \text{ nb (data)} \\ \text{FEWZ+HERAPDF1.5 NNLO (theory)}$	\$	0	0.035	PRD 85, 072004 (2012)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	+Ŧ	$\sigma = 182.9 \pm 3.1 \pm 6.4 \text{ pb} (\text{data})$ top++ NNLO+NNLL (theory)	¢	0	4.6	Eur. Phys. J. C 74: 3109 (20	14)
$\frac{1}{10^{16}} \frac{1}{10^{16}} $		$\sigma = 242.4 \pm 1.7 \pm 10.2 \text{ pb (data)} \\ \text{top++ NNLO+NNLL (theory)}$	4	4	20.3	Eur. Phys. J. C 74: 3109 (20	14)
$\frac{1}{10^{-5}} \frac{1}{10^{-5}} \frac{1}{10^{-5}} \frac{1}{10^{-2}} \frac{1}{10^{-2}} \frac{1}{10^{-1}} \frac{1}{10^{-1}} \frac{1}{10^{2}} \frac{1}{10^{3}} \frac{1}{10^{4}} \frac{1}{10^{5}} \frac{1}{10^{6}} \frac{1}{10^{11}} \frac{1}{10^{5}} \frac{1}{10^{6}} \frac{1}{10^{11}} \frac{1}{10^{5}} \frac{1}{10^{5}} \frac{1}{10^{6}} \frac{1}{10^{11}} \frac{1}{10^{5}} \frac{1}{1$	t _{t-chan}		¢		4.6	PRD 90, 112006 (2014)	
$\frac{\mathbf{v}_{\text{total}}}{\mathbf{v}_{\text{total}}} = \frac{\mathbf{v}_{14} \mathbf{v}_{12} \mathbf{v}_{23} \mathbf{v}_{14} \mathbf{v}_{16} \mathbf{v}$			4		20.3	ATLAS-CONF-2014-007	
$\frac{WW}{lotal} \stackrel{(r=13+4)(2+52+6)(0)}{Herry} (r=13+4)(2$		$\sigma = 68.0 \pm 7.0 \pm 19.0 \text{ pb (data)} \\ \text{MC@NLO (theory)}$	•		4.6	JHEP 01, 049 (2015)	
$\frac{1}{10tal} \qquad \begin{array}{c} r = 1.4 \times \frac{1}{2}d_{1} + \frac{1}{$	\ \/\\/	$\sigma = 51.9 \pm 2.0 \pm 4.4 \text{ pb} (\text{data})$ MCFM (theory)	<u> </u>		4.6	PRD 87, 112001 (2013)	
$\frac{Wt}{total} = \frac{1}{272 \pm 32 \pm 32} \frac{1}{42} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{10000000000000000000000000000000000$		$\sigma = 71.4 \pm 1.2 \pm 5.5 - 4.9 \text{ pb} (\text{data})$ MCFM (theory)			20.3	ATLAS-CONF-2014-033	
$\frac{v = 272 \pm 2.8 \pm 6.6 \text{ (deal)}}{\text{NC-M}(\text{theory})} \qquad $	\ \/+	$\sigma = 16.8 \pm 2.9 \pm 3.9 \text{ pb} (\text{data})$ NLO+NLL (theory)	o stat+	-syst	2.0	PLB 716, 142-159 (2012)	
$\frac{1}{10^{-5}} \frac{1}{10^{-4}} \frac{1}{10^{-3}} \frac{1}{10^{-2}} \frac{1}{10^{-1}} \frac{1}{1} \frac{1}{10^{1}} \frac{1}{10^{2}} \frac{1}{10^{3}} \frac{1}{10^{4}} \frac{1}{10^{5}} \frac{1}{10^{6}} \frac{1}{10^{11}} \frac{1}{10^{5}} \frac{1}{10^{6}} \frac{1}{10^{11}} \frac{1}{10^{5}} \frac$		$\sigma = 27.2 \pm 2.8 \pm 5.4$ pb (data)	<u>A</u>		20.3	ATLAS-CONF-2013-100	
$\frac{WZ}{total} = \frac{P = 100 \text{ MCFM}(theory)}{r = 203 + 09 \text{ of taba}} = \frac{P}{MCFM(theory)} = \frac{P}{total} = \frac{P}{$		$\sigma = 23.9 + 3.9 - 3.5 \text{ pb} (\text{data})$ LHC-HXSWG (theory)	<u> </u>		20.3	ATLAS-CONF-2015-007	
$\frac{13.0}{MCF-M (heory)} \xrightarrow{ATLAS-CONF-2013-021} \frac{13.0}{MCF-M (heory)} \xrightarrow{ATLAS-CONF-2013-021} \frac{13.0}{MCF-M (heory)} \xrightarrow{ATLAS-CONF-2013-021} \frac{13.0}{MCF-M (heory)} \xrightarrow{ATLAS-CONF-2013-020} For an overview of the total total the total the total total the total total the total total the total the total total total total the total t$	\\/7	$\sigma = 19.0 + 1.4 - 1.3 \pm 1.0 \text{ pb} \text{ (data)}$ MCFM (theory)	•		4.6	EPJC 72, 2173 (2012)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\sigma = 20.3 + 0.8 - 0.7 + 1.4 - 1.3 \text{ pb (data)}$ MCFM (theory)			13.0	ATLAS-CONF-2013-021	
$\frac{\text{total}}{\text{MCFM}} \stackrel{(r=14 + 0.5 \text{ total}}{\text{MCFM}} \stackrel{(r=2.43 + 0.6 - 0.55 \text{ pb} (data)}{\text{LHC-HXSWG}} \stackrel{(r=2.43 + 0.6 - 0.5 \text{ pb} (data)}{\text{LHC-HXSWG}} (r=2.43 + 0.$	77	$\sigma = 6.7 \pm 0.7 + 0.5 - 0.4$ pb (data) MCFM (theory)	stat	-syst	4.6	JHEP 03, 128 (2013)	
total $t\bar{t}W$ total $t\bar{t}Z$		$\sigma = 7.1 + 0.5 - 0.4 \pm 0.4 \text{ pb (data)}$ MCFM (theory)		3	20.3	ATLAS-CONF-2013-020	
$\frac{t\bar{t}W}{total} = 3000 + 1200 - 1000 + 700 - 40.0 \text{ b} (data)}{L} = Run 1 \sqrt{s} = 7, 8 \text{ TeV} = Run 1 \sqrt{s} = 7, 8 \text{ TeV} = 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 1 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{11} 0.5 1 1.5 2$ $20.3 \text{ ATLAS-CONF-2014-038} \text{ Run 1 ATLAS results see} \text{ Run 1 ATLAS results see} \text{ Run 1, } ATLAS \text{ Conf-2014-038} \text{ Run 1 ATLAS results see} \text{ Run 1, } ATLAS \text{ Conf-2014-038} \text{ Run 1 ATLAS by Enrico, Nuno, } \text{ Peter, Grzegorz Pawel, } \text{ Claudia Xuri Hidovulki}$		$\sigma = 2.43 + 0.6 - 0.55 \text{ pb (data)} \\ \text{LHC-HXSWG (theory)} $	ATLAS Prelimin	ary 🛛	20.3		
$t\bar{t}Z_{total} = 150.9 + 55.0 - 50.0 + 21.0 tb (data) \\ = 150.0 + 50.0 + 50.0 + 21.0 tb (data) \\ = 150.0 + 50.0 + 50.0 + 21.0 tb (data) \\ = 150.0 + 5$	ttW total	$\sigma = 300.0 + 120.0 - 100.0 + 70.0 - 40.0 \text{ fb (data)}$			20.3		
$10^{-5} 10^{-4} 10^{-5} 10^{-2} 10^{-1} 1$ $10^{-1} 10^{2} 10^{5} 10^{4} 10^{5} 10^{6} 10^{11} 0.5 1$ $1.5 2$	tītZ total		, .		20.3		
(Naudia Vuri Hidavulzi	-		$1 10^2 10^3 10^4 10^5 1$		-		Peter, Grzegorz Pawel,
σ [nh] observed/theory $Olauula, Tull, Tlueyuki,$	-						Claudia Vuri Hidovulzi
			σ	nbl observed/th	eorv		

Outline


- The status of ATLAS in Run 2
- Jet and photons cross section measurement
- \circ J/ ψ non-prompt fraction
- Inclusive W/Z and Z+jets cross sections
- Top pair production
- o Outlook

3

What's new in Run 2


- Centre of mass energy!
 - Thanks to the LHC machine
- New generators, PDFs, calculations keep coming!
 - Thanks to the theory community
 - Contributions from LHC experiments as well
- Many improvements in the experiment, most notably
 - Insertable B-Layer
 - Algorithms (online and offline) and analysis software

4

Insertable B-Layer

Nicola Orlando (AUTh, HKU)

Early data

Total Integrated Luminosity [fb⁻¹] 2.5 **ATLAS Online Luminosity** √s = 13 TeV 25 ns LHC Delivered Improved beam emittance-**ATLAS Recorded** 2 Total Delivered: 1.91 fb⁻¹ Total Recorded: 1.75 fb⁻¹ 1.5 25 ns 50 ns 0.5 0 25/05 27/06 30/07 01/09 05/10 Day in 2015 Early analyses based on "early" data, up to 85 pb⁻¹

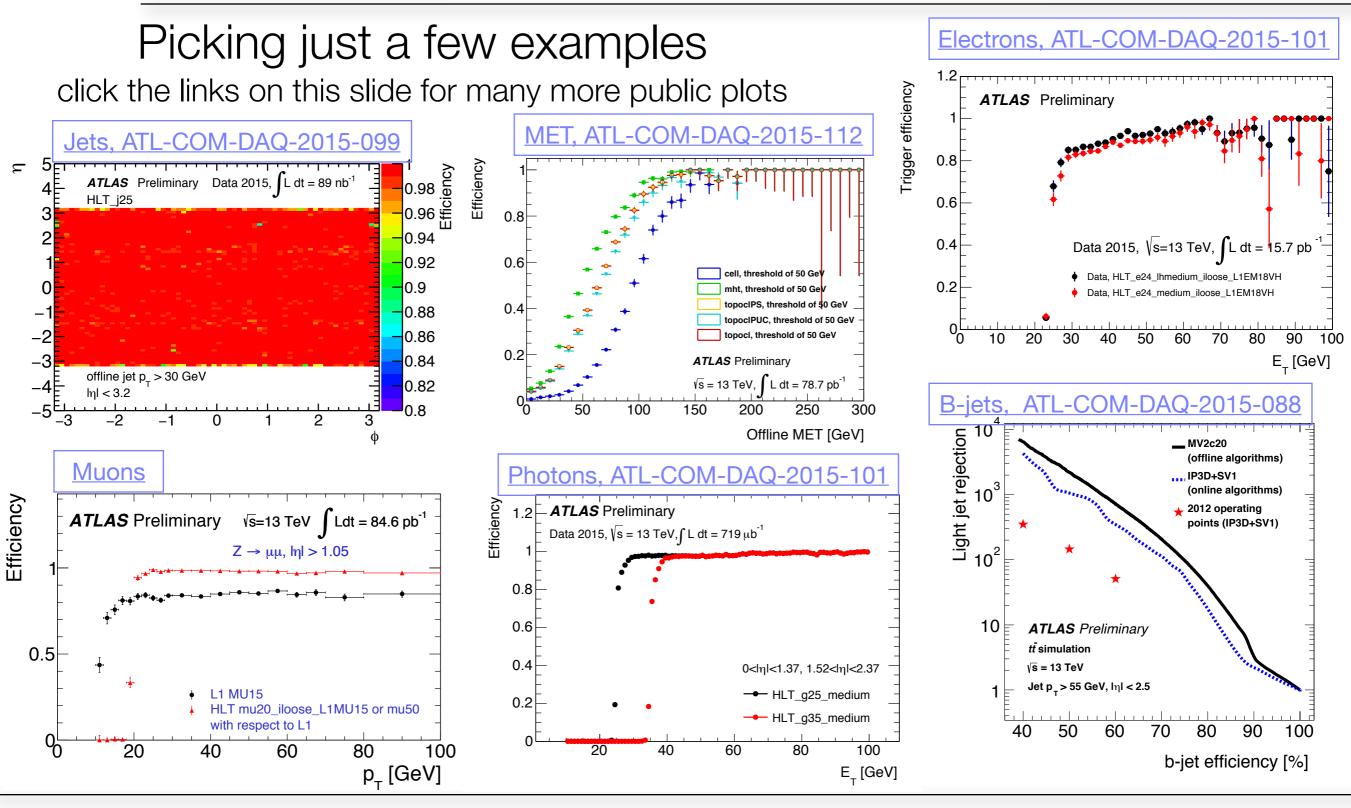
- On average 19 interactions per bunch crossing, 50 ns bunch spacing
- Detector operations running very smoothly

Percentage of operational detector channels above 97%

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	92 M	99.0%
SCT Silicon Strips	6.3 M	98.9%
TRT Transition Radiation Tracker	350 k	97.3%
LAr EM Calorimeter	170 k	100%
Tile calorimeter	4900	99.2%
Hadronic endcap LAr calorimeter	5600	99.6%
Forward LAr calorimeter	3500	99.8%
LVL1 Calo trigger	7160	100%
LVL1 Muon RPC trigger	370 k	98.7%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	357 k	99.8%
CSC Cathode Strip Chambers	31 k	98.4%
RPC Barrel Muon Chambers	370 k	97.1%
TGC Endcap Muon Chambers	320 k	99.8%

<u>https://twiki.cern.ch/twiki/bin/view/</u> <u>AtlasPublic/ApprovedPlotsATLASDetector</u>

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2


0

Summary of measurements with early data

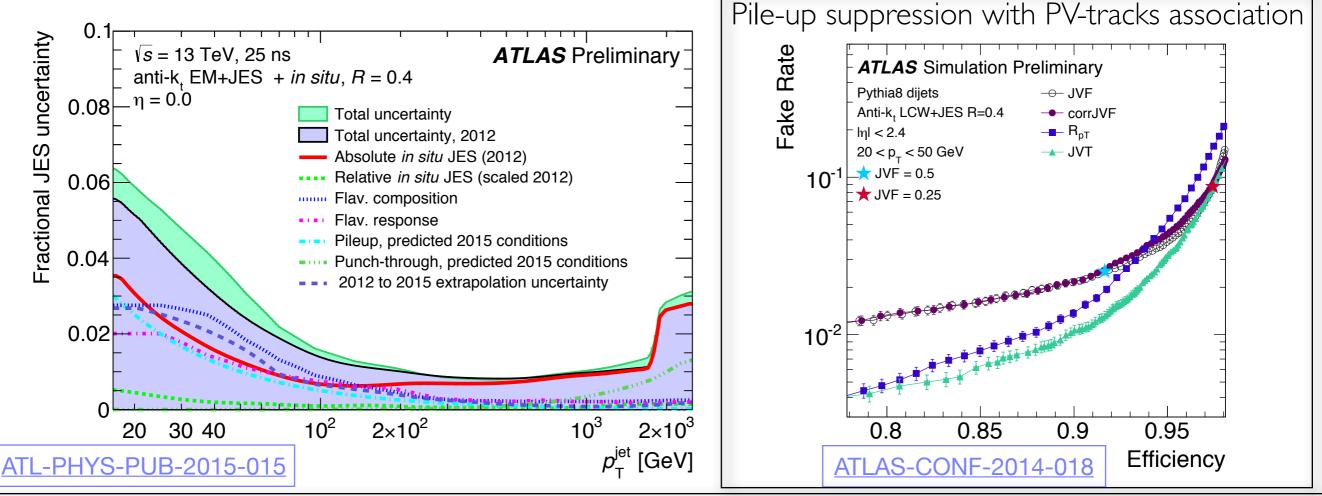
Process	Final state	Analysis reference	Used integrated luminosity [pb ⁻¹]	
Multijets	Jets	ATLAS-CONF-2015-034	78	
Inclusive photons, di- photons	i i Pholons		6.4	
J/ ψ	Muons	ATLAS-CONF-2015-030	6.4	
W/Z	Muons, electrons, missing E⊤	ATLAS-CONF-2015-039	85	
Z+jets	Muons, electrons, jets	ATLAS-CONF-2015-041	85	
Тор	Muons, electrons, jets, b-jets, missing E⊤	ATLAS-CONF-2015-033 ATLAS-CONF-2015-049	78-85	

For a full list of 13 TeV ATLAS results consult the web page https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Summer2015-13TeV

Triggering on 13 TeV collisions

Nicola Orlando (AUTh, HKU)

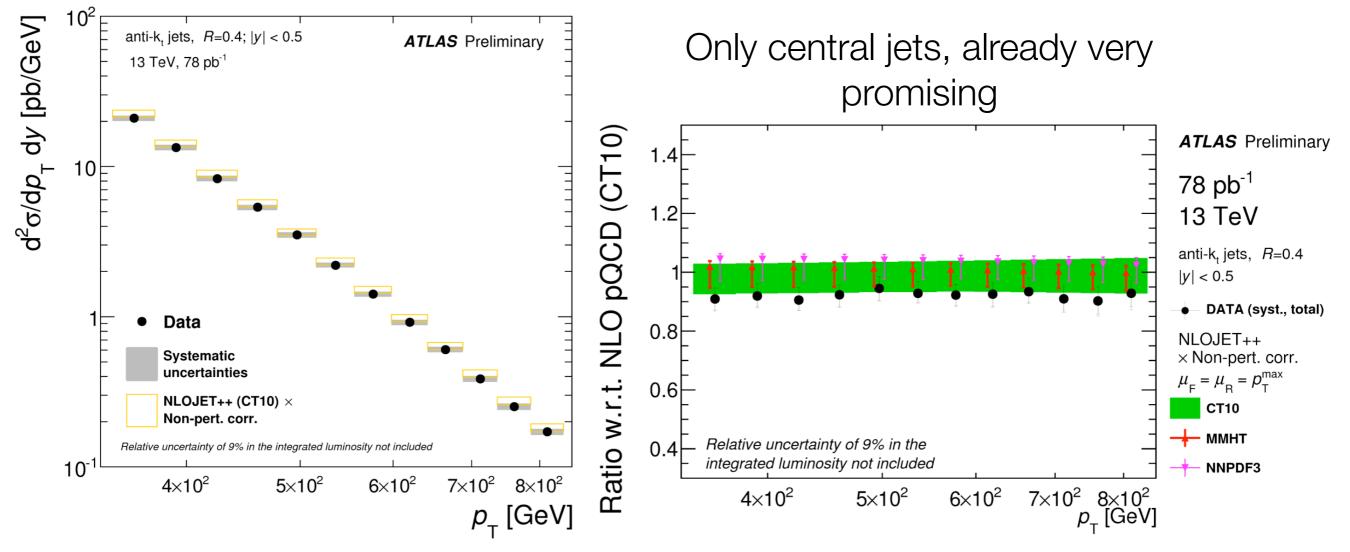
Event: 531676916 2015-08-22 04:20:10 CEST


Jets and photons

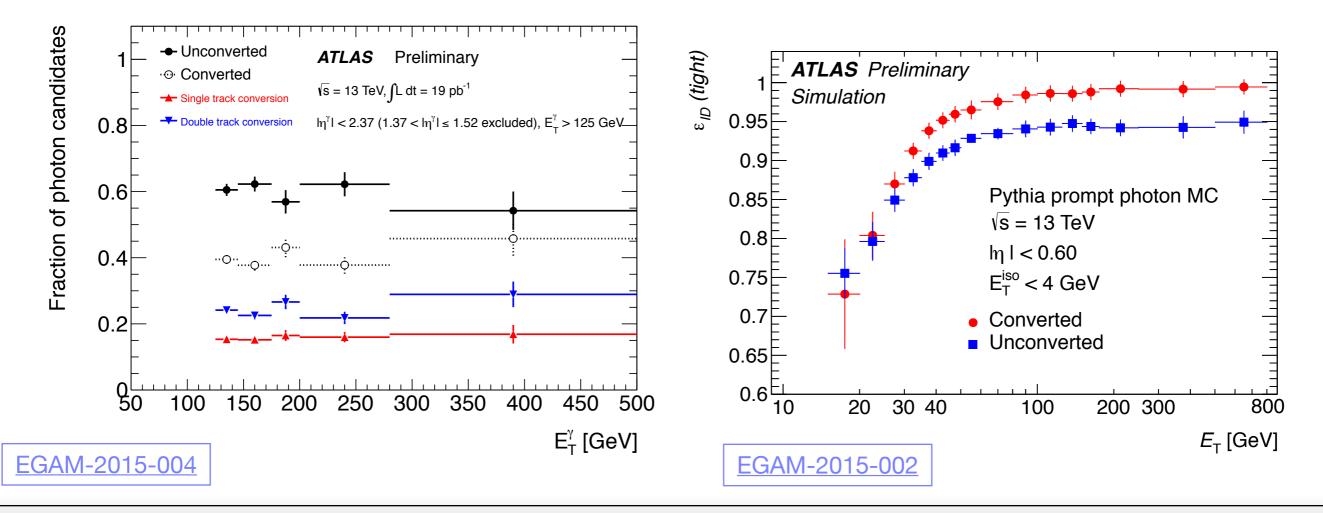
Di-jet system with invariant mass of 5.2 TeV

Nicola Orlando (AUTh, HKU)

Jets in early data


- Exploit the solid understanding of jet reconstruction performance at 8 TeV
 - Extrapolate it to the new data taking conditions (and new detector) using the MC
- Similar strategy is used in other complicated performance measurements (e.g., b-tagging)

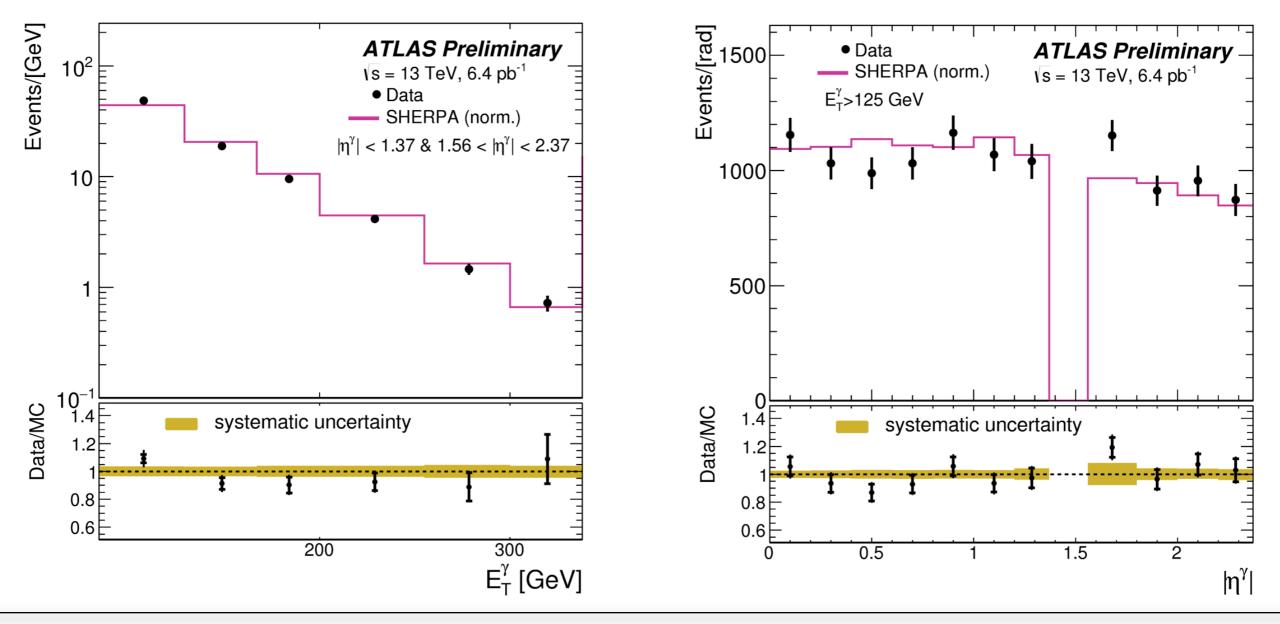
Nicola Orlando (AUTh, HKU)


13 TeV Jet cross section

- NLO predictions match the data
- Difference in normalisation covered by luminosity uncertainty, 9%, not shown in the plot

Photon

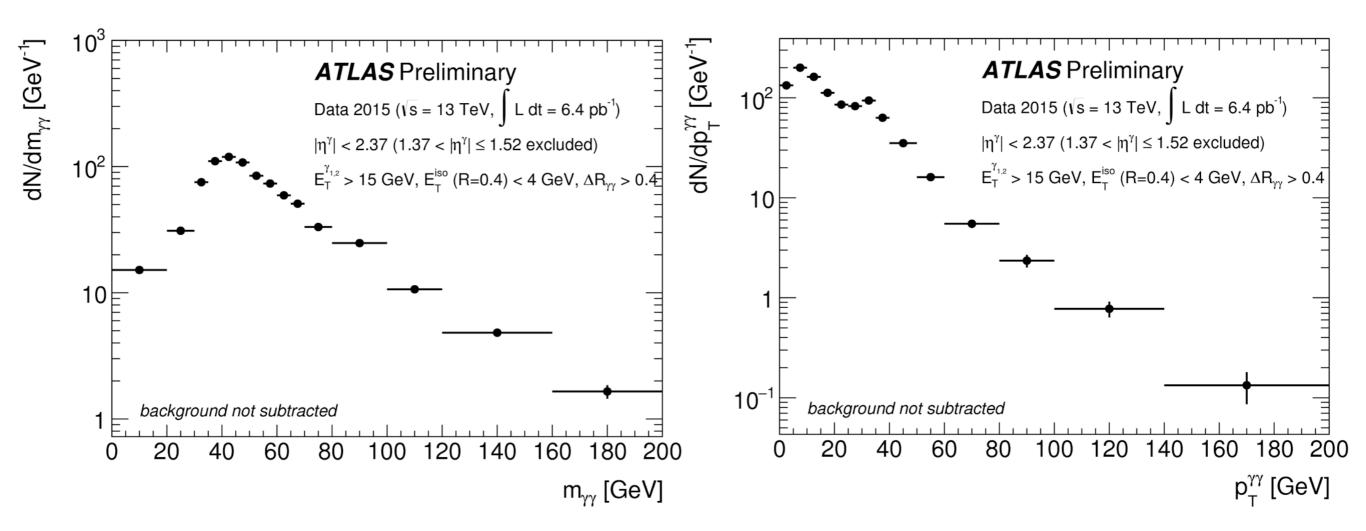
- Detailed photons performance studies are ongoing
- For E_T above 100 GeV more than 90% identification efficiency is expected

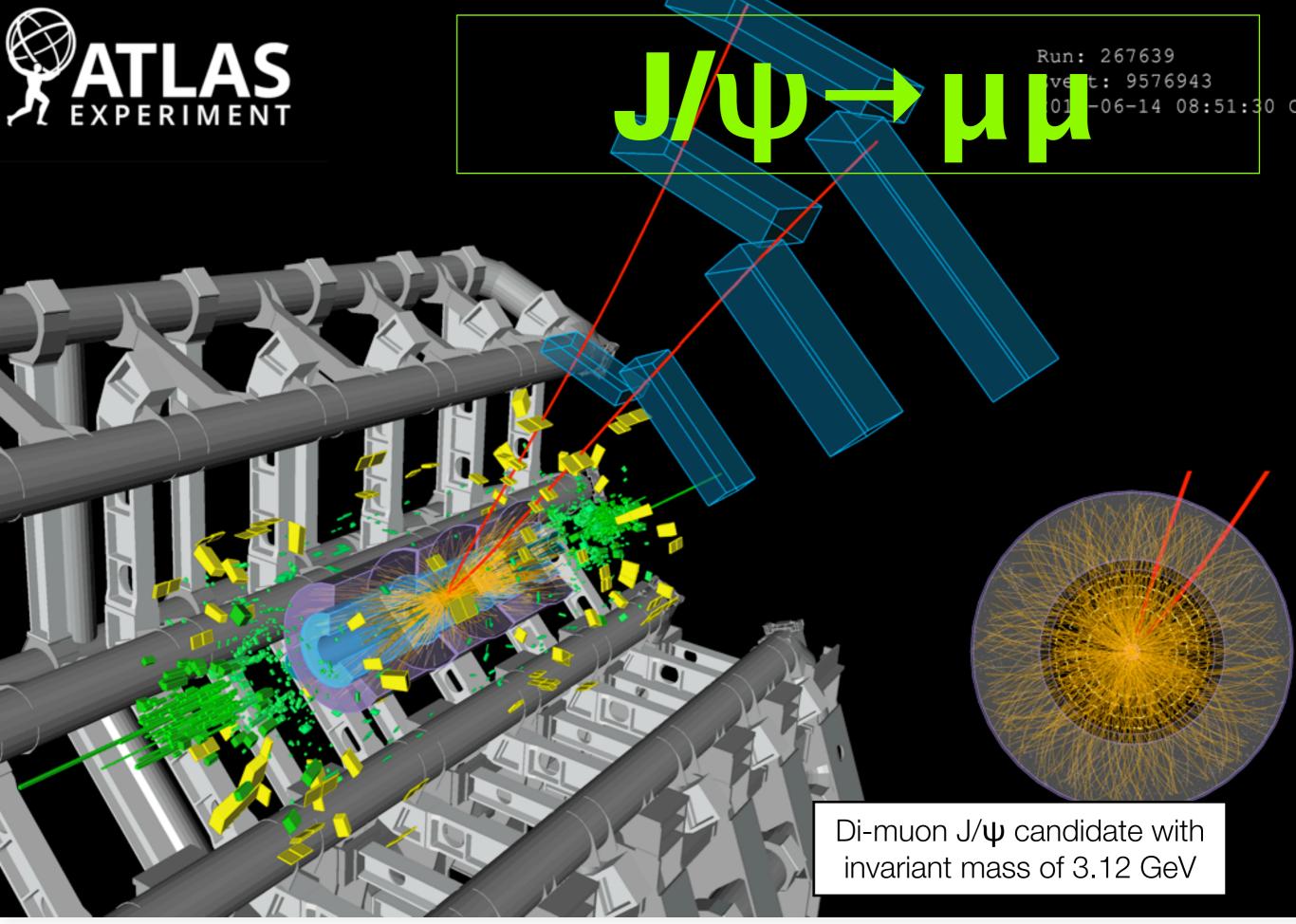

Nicola Orlando (AUTh, HKU)

13

ATL-PHYS-PUB-2015-016

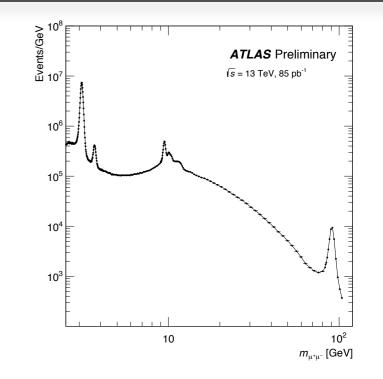
Inclusive photon production

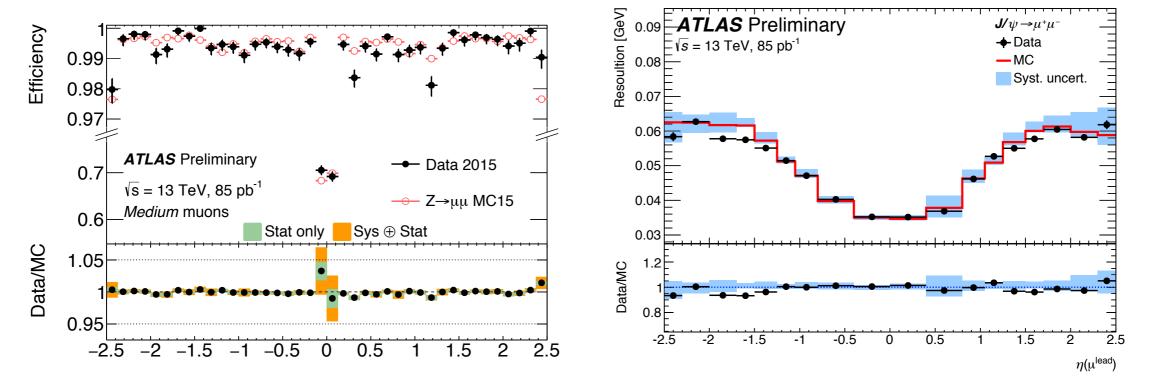

- Detector level distributions for inclusive photon production (backgrounds are subtracted)
- Satisfactory agreement with Sherpa prediction


Nicola Orlando (AUTh, HKU)

Di-photons

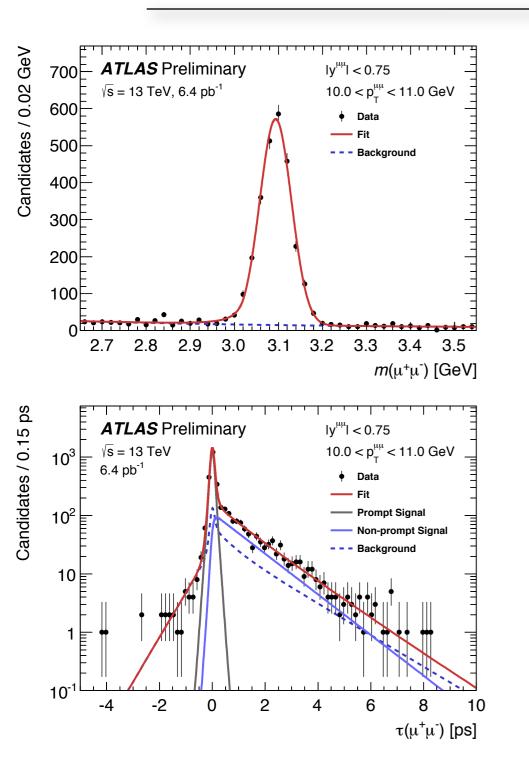
- Control distributions for di-photon selection
- More results and unfolded spectra to come!

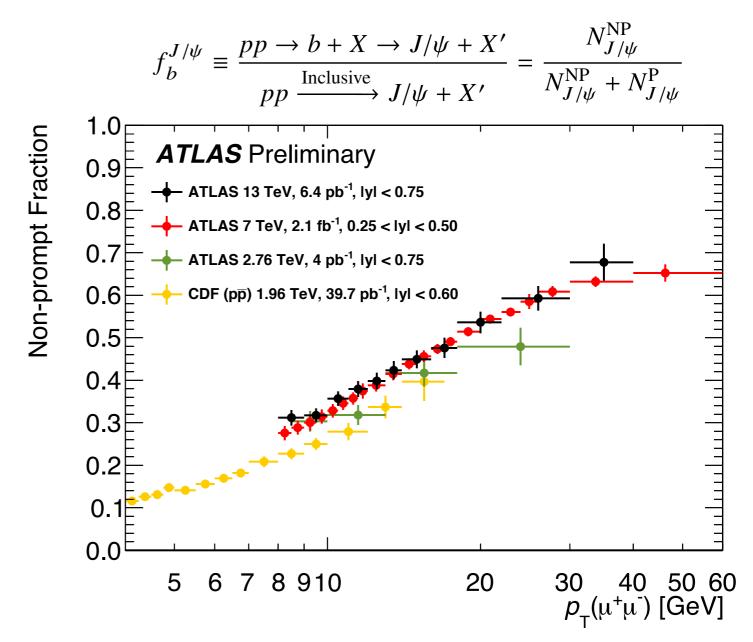

ATL-PHYS-PUB-2015-020


Nicola Orlando (AUTh, HKU)

Muons

- Consolidated understanding of muon performance already with less than 100 pb⁻¹
- First insitu calibrations are already available
 - Based on J/ψ and Z control samples
- Uncertainties are already at per-cent level


17


Nicola Orlando (AUTh, HKU)

ATL-PHYS-PUB-2015-037

$\frac{\text{ATLAS-CONF-2015-030}}{\text{Non-prompt J/\psi fraction}}$

No significative change between 7 and 13 TeV data

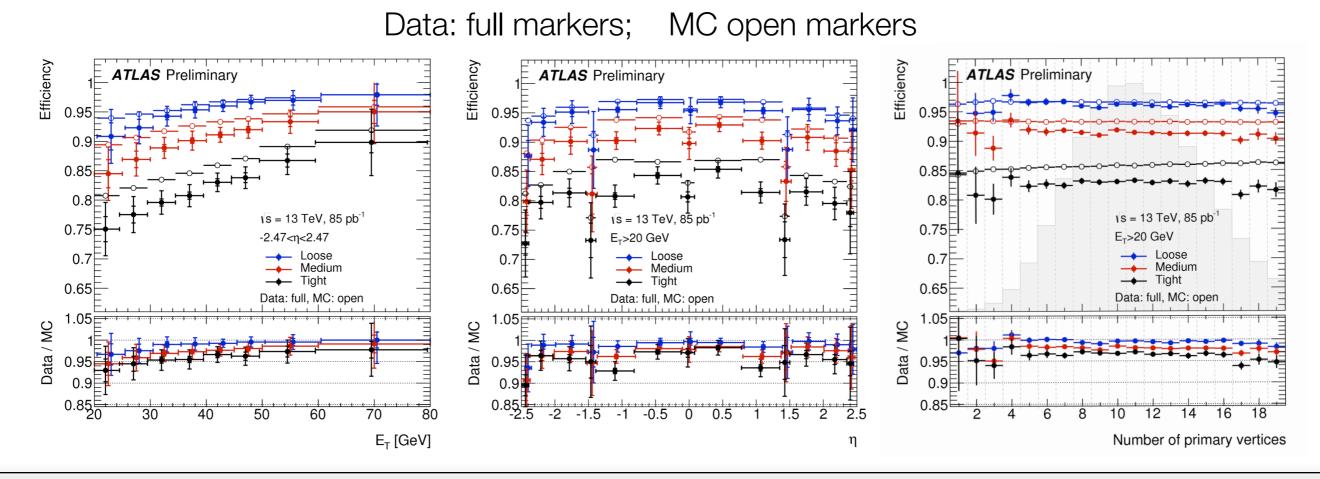
Run: 267638 Event: 242090708 2015-06-14 01:01:14 CEST

Di-muon Z candidate with invariant mass of 90.2 GeV

AC

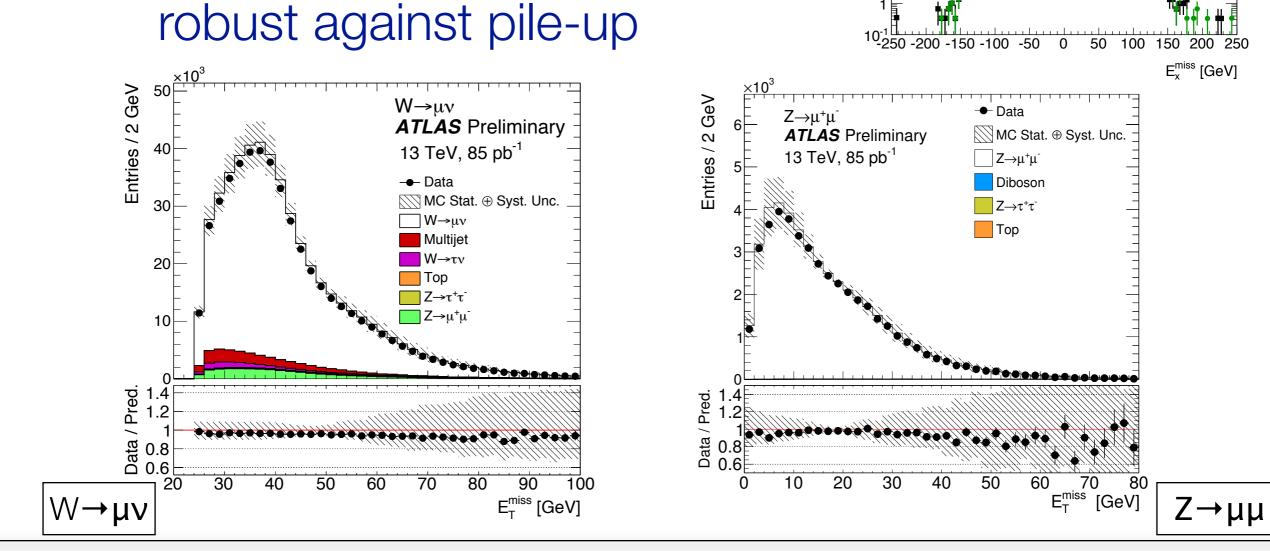
Nicola Orlando (AUTh, HKU)

XLV International Symposium on Multiparticle Dynamics


TP

DSONS

ATL-PHYS-PUB-2015-041


Electrons

- Likelihood selection based on three identification working points
- Pile-up dependence well modeled by simulation

Missing Et

- Redundant E_T algorithms for early Run 2 operation
 - Validation of algorithms robust against pile-up

Nicola Orlando (AUTh, HKU)

AS-CONF-2015-039

10⁷

10⁶

10⁵

10⁴

 10^{3}

 10^{2}

10

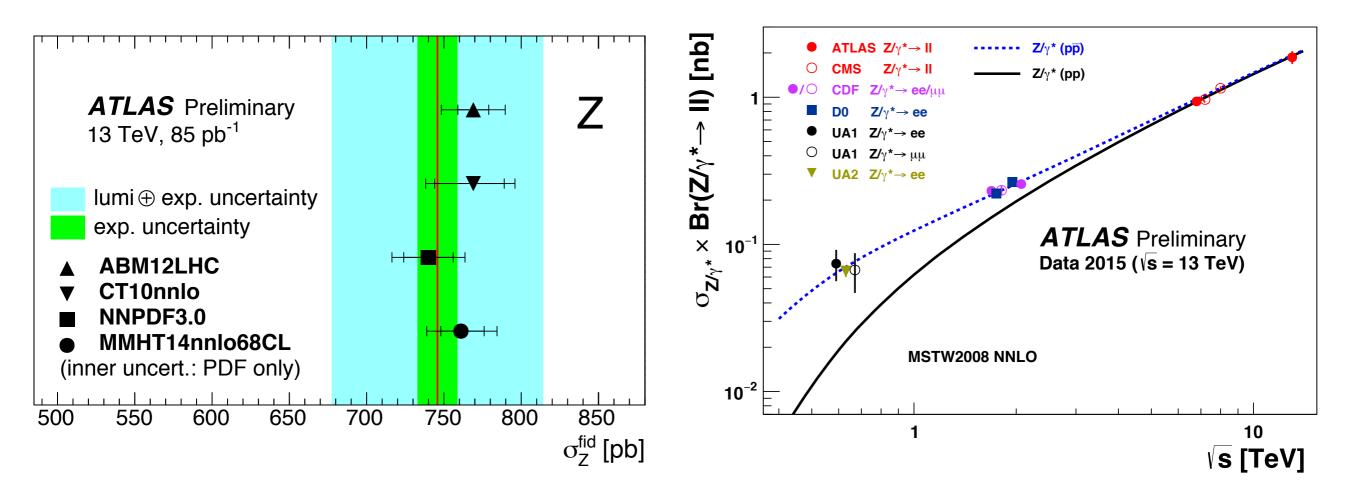
Events

L-PHYS-PUB-2015-023

Track E_{τ}^{miss}

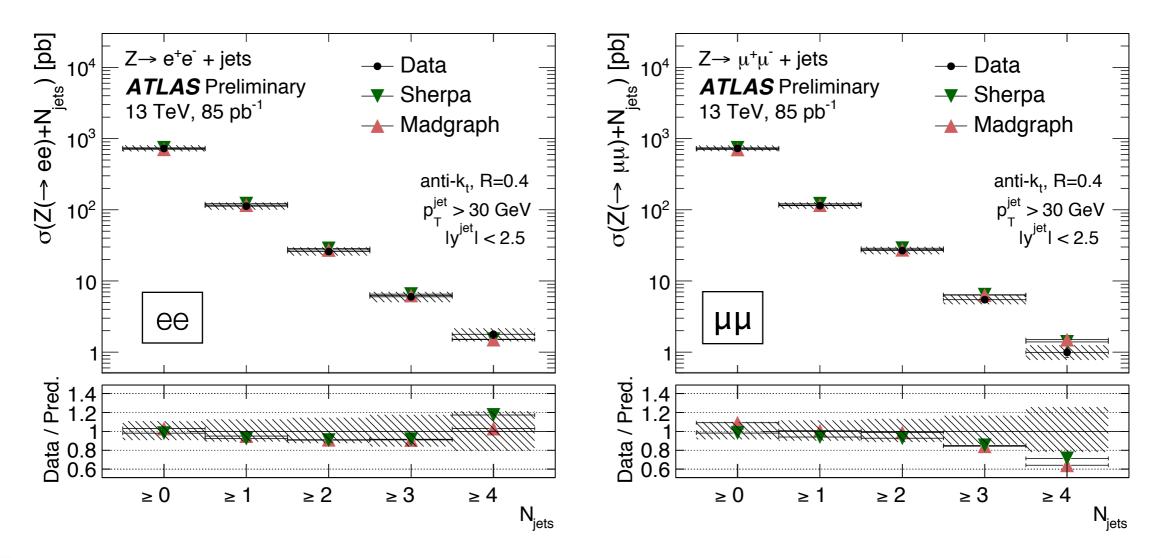
21

ATLAS Simulation Preliminary


√s = 13 TeV

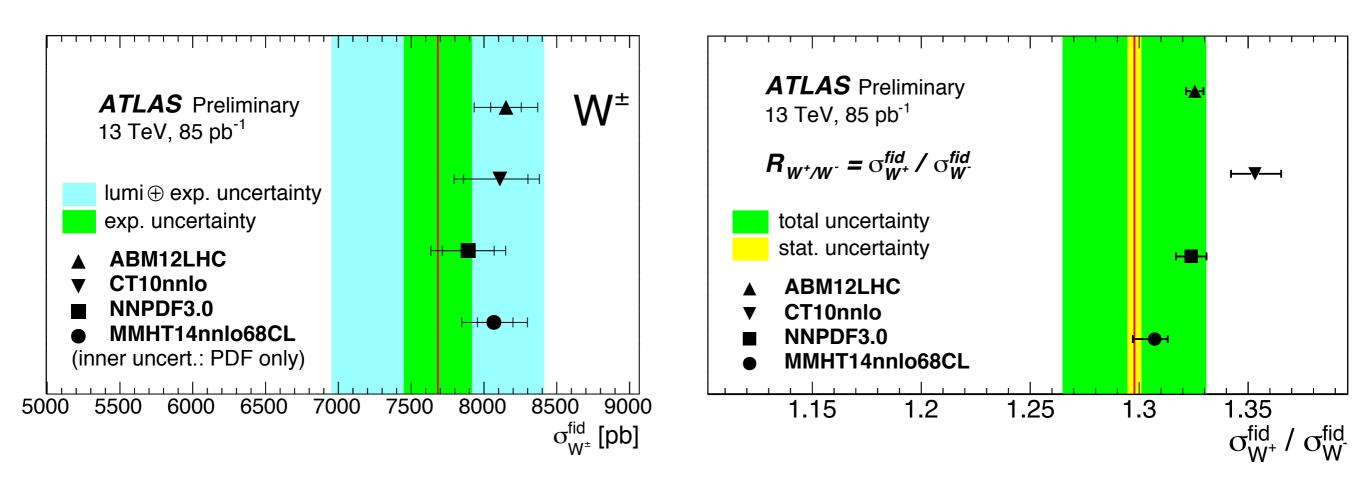
Z → μμ 25r

all jets


Z boson cross section

- Data show already the potential to discriminate between PDFs
- Luminosity uncertainty limits the precision of the measurement

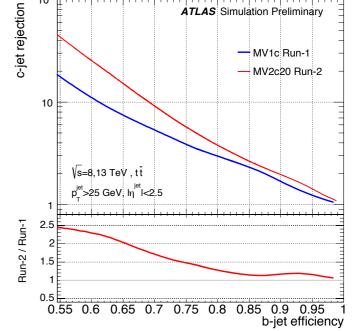
Z+jets measurement

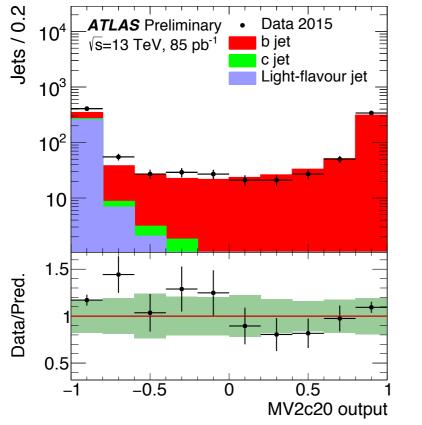

- High priority is to test the new set-up for the MC event generators
 - Madgraph and Sherpa perform already very well

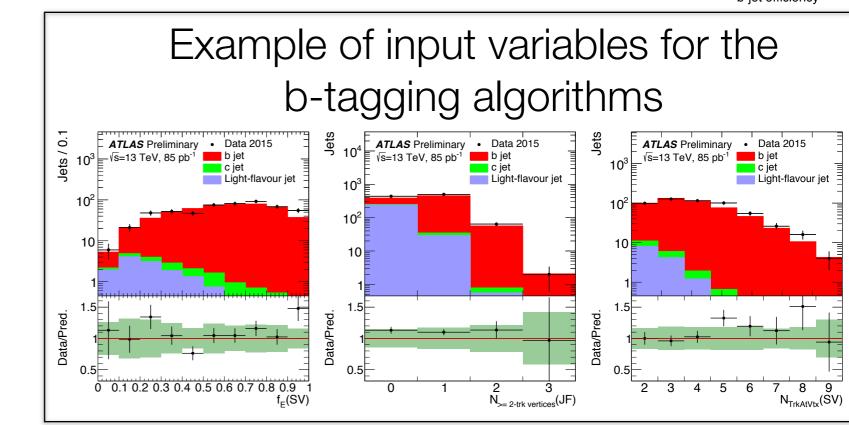
W boson cross section

• Data precision affected by luminosity uncertainty

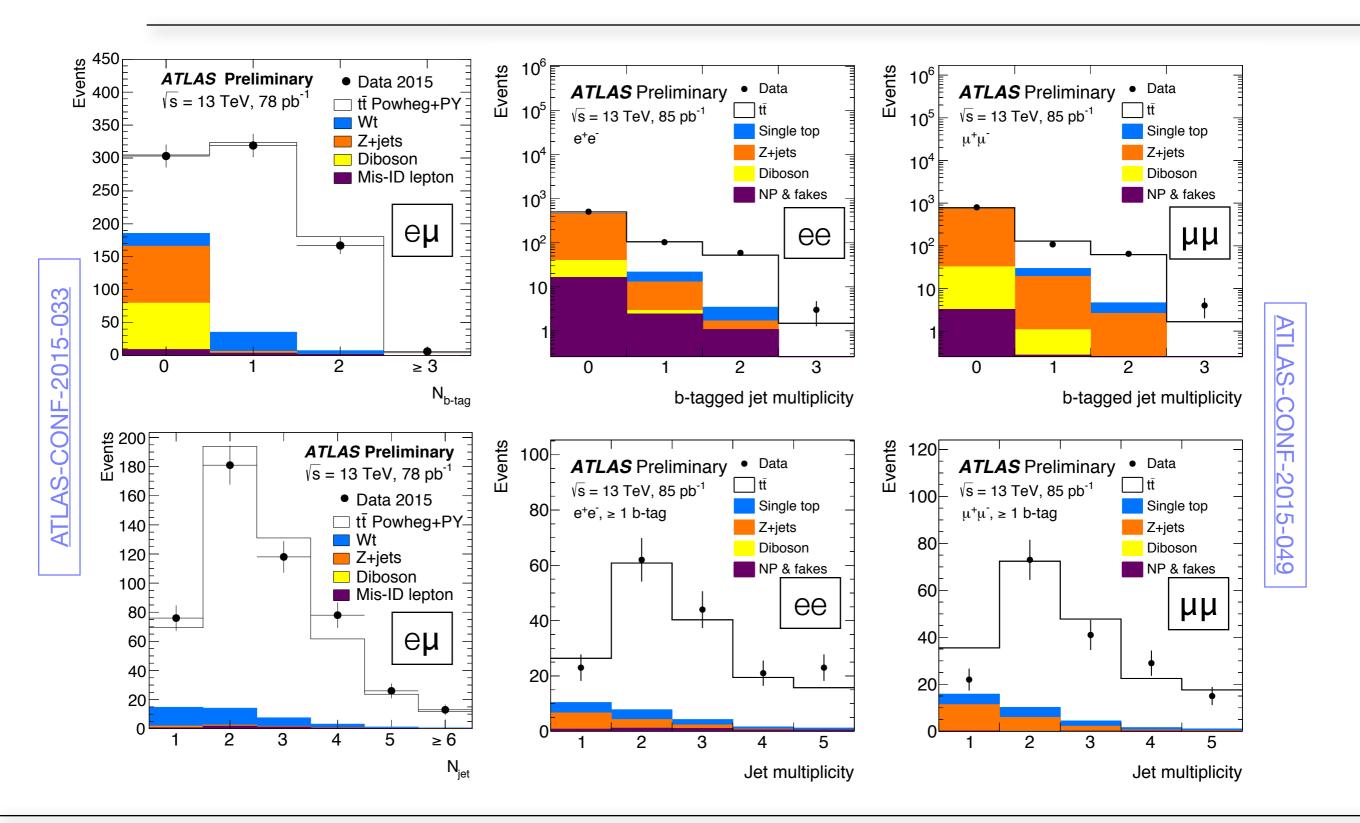
- Measure cross section ratios
- Sensitivity to PDFs

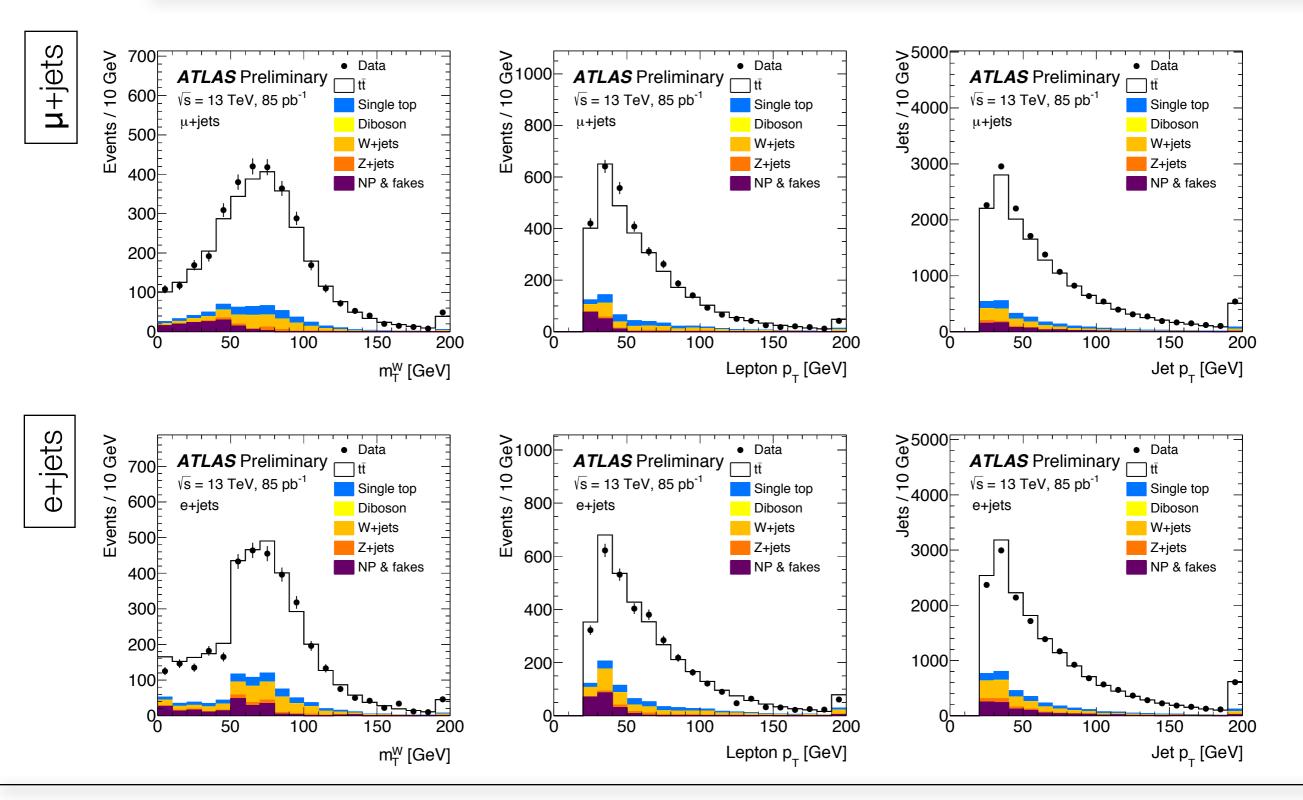



The top

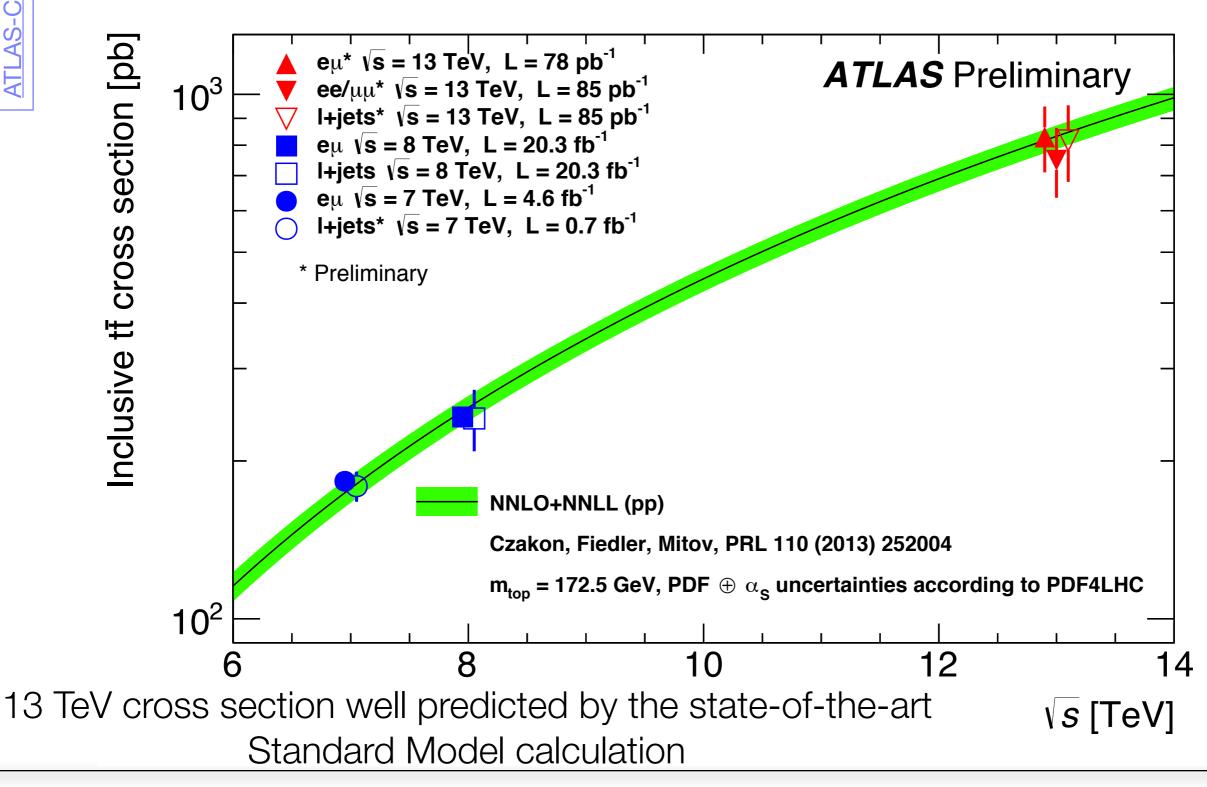


B-tagging


- ("New") B-tagging in Run 2 benefits from the new IBL detector and improvement in the algorithms
- An early calibration already underway by using tt control samples

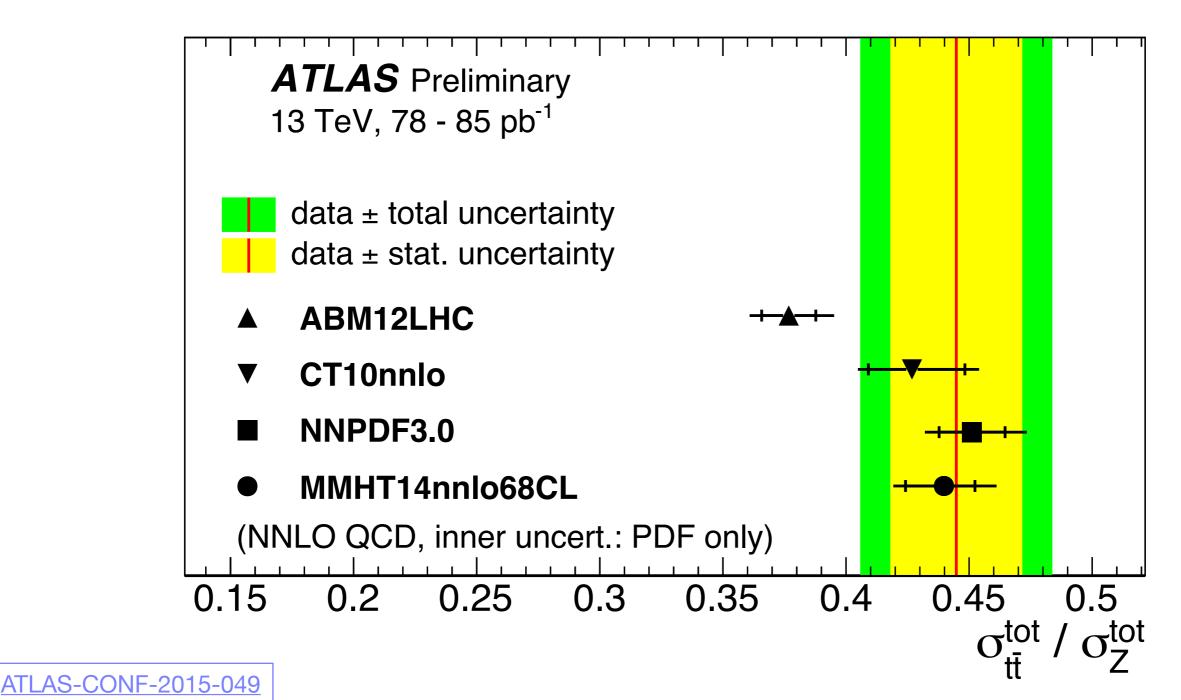


Top control distributions: di-lepton channels


Top control distributions: *l*+jets channels

Nicola Orlando (AUTh, HKU)

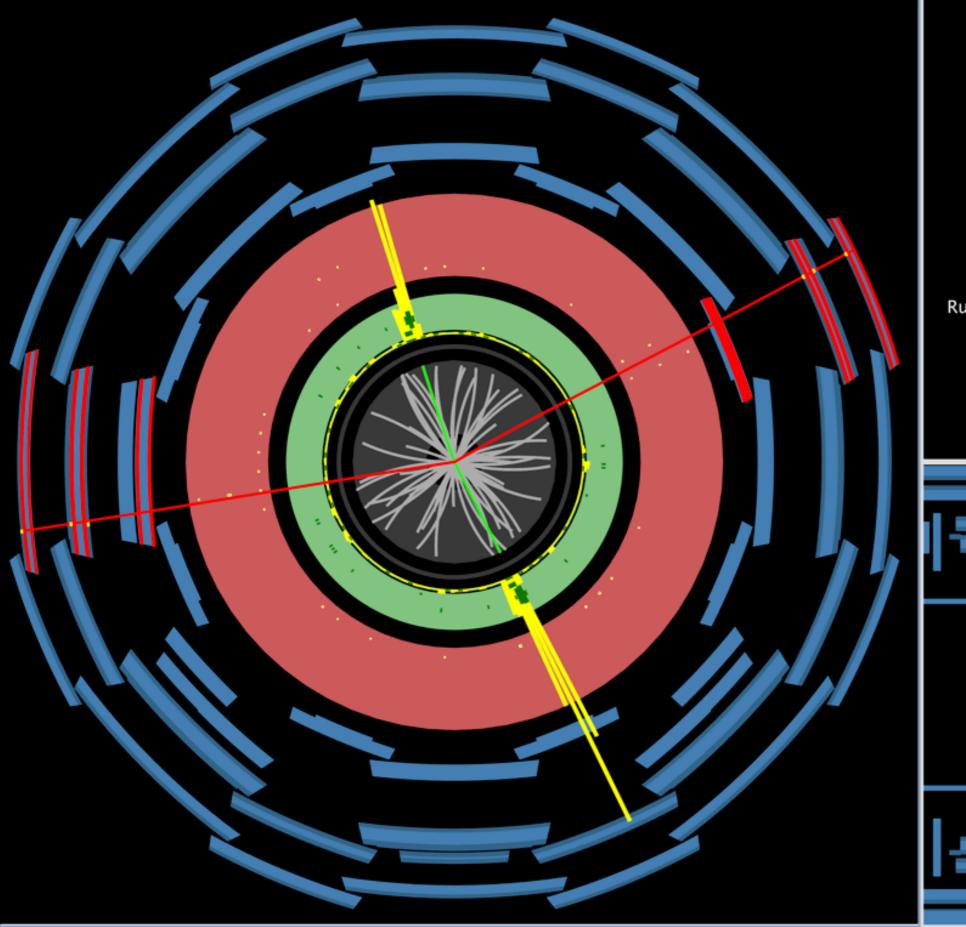
ATL


Cross sections

Nicola Orlando (AUTh, HKU)

tt/Z cross section ratio

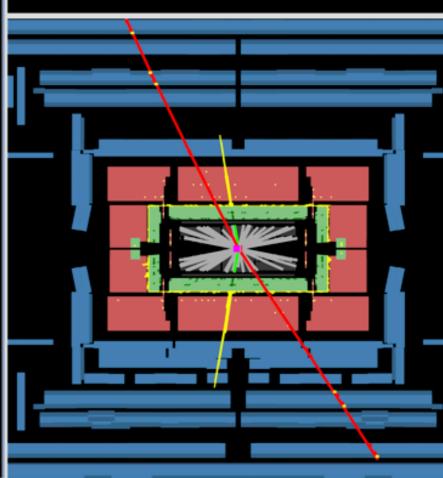
Sensitive to the ration between gluon and sea-quarks PDFs


Outlook

- First Run 2 LHC stable beam on 3 June 2015
- After three months many hard QCD measurements already presented
 - Jets, photons, J/ψ, W/Z, Z+jets, top-pair
 - Used at most 85 pb⁻¹
- Much more data to be analysed in the pipeline (more than 1.5 fb⁻¹ to be analyses)

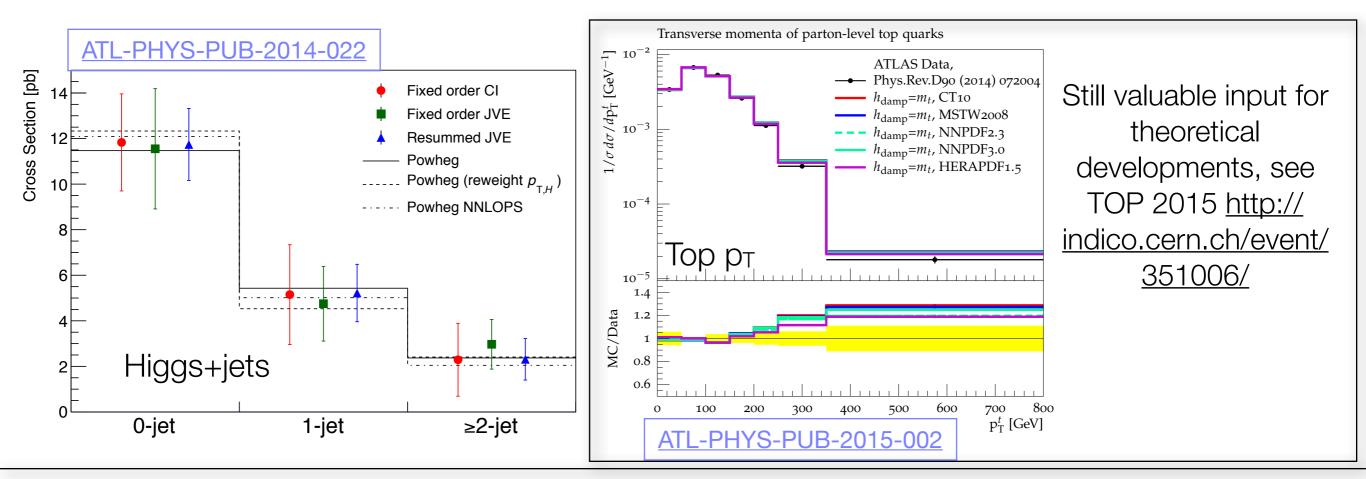
The best is yet to come!

Thank you


Nicola Orlando (AUTh, HKU)

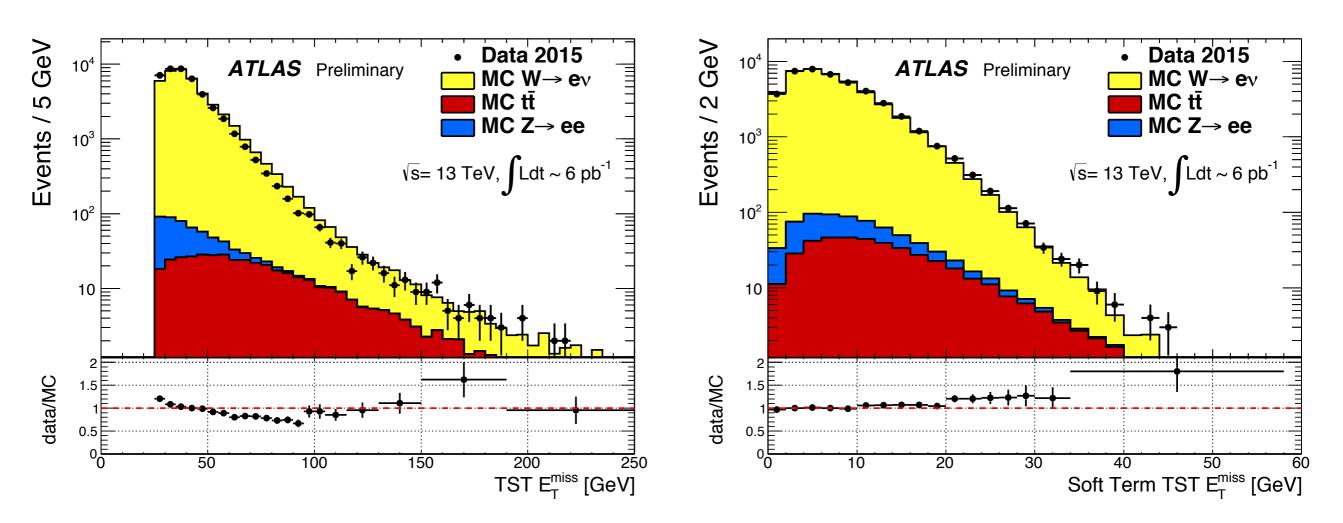
Run Number: 271298, Event Number: 78224729

Date: 2015-07-10 20:50:34 CEST

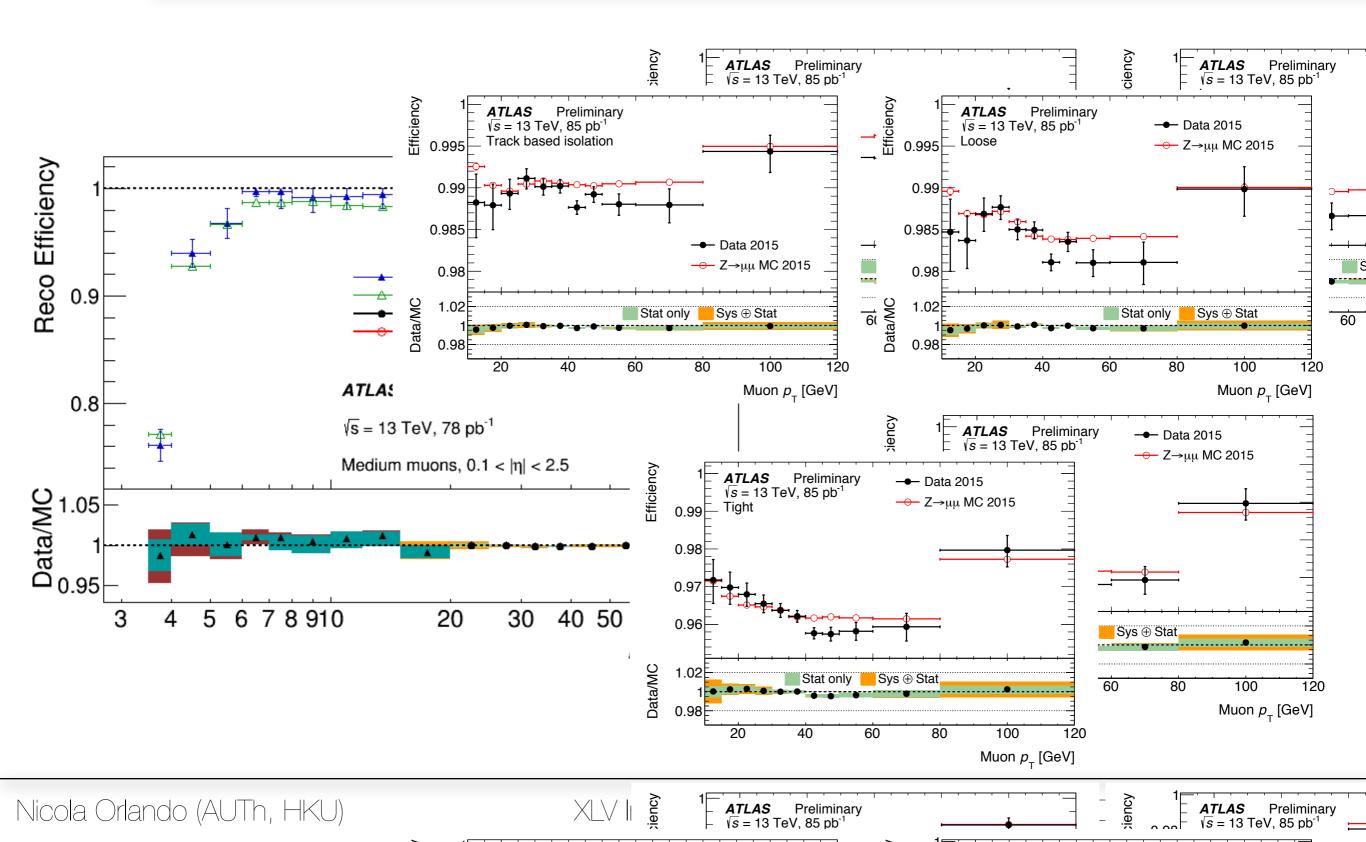

Nicola Orlando (AUTh, HKU)

Insertable B-Layer

Item		Radial Extension	Length	Staves /	Modules	Pixels
		[mm]	[mm]	Sectors		$(\times 10^{6})$
Beam p	ipe (today)	29 < R < 36				
Beam pipe (with IBL)		25 < R < 29				
IBL	Envelope	31.0 < R < 40.0				
	Sensitive	< R > = 25.7	Z < 332	14	224	6.02
Pixel	Envelope	45.5 < R < 241.0	Z < 3092			
B-layer	Sensitive	< R > = 50.5	Z < 400.5	22	286	13.2
Layer 1	Sensitive	< R > = 88.5	Z < 400.5	38	494	22.8
Layer 2	Sensitive	< R > = 122.5	Z < 400.5	52	676	31.2
Disk 1	Sensitive	88.8 < <i>R</i> < 149.6 = 88.5	< <i>Z</i> > = 495	8×2	48×2	4.4
Disk 1	Sensitive	88.8 < <i>R</i> < 149.6 = 88.5	< Z > = 580	8×2	48×2	4.4
Disk 1	Sensitive	88.8 < <i>R</i> < 149.6 = 88.5	< Z > = 650	8×2	48×2	4.4
					Pixel Total	80.4


MC modeling

- New generators introduced in the ATLAS production system
- Run 1 experience has a leading impact
 - New tunes or checks based on Run 1 data
 - Understanding better V+jets, top, and Higgs modeling
- Benchmarking exercises for generators



Nicola Orlando (AUTh, HKU)

Missing E_T control plots

Muons extra

Electrons

Туре	Description	Name			
Hadronic leakage	Ratio of $E_{\rm T}$ in the first layer of the hadronic calorimeter to $E_{\rm T}$ of the EM cluster	R _{Had1}			
	(used over the range $ \eta < 0.8$ or $ \eta > 1.37$)				
	Ratio of $E_{\rm T}$ in the hadronic calorimeter to $E_{\rm T}$ of the EM cluster	R _{Had}			
	(used over the range $0.8 < \eta < 1.37$)				
Back layer of	Ratio of the energy in the back layer to the total energy in the EM accordion	f_3			
EM calorimeter	calorimeter				
Middle layer of	Lateral shower width, $\sqrt{(\Sigma E_i \eta_i^2)/(\Sigma E_i) - ((\Sigma E_i \eta_i)/(\Sigma E_i))^2}$, where E_i is the	$W_{\eta 2}$			
EM calorimeter	energy and η_i is the pseudorapidity of cell <i>i</i> and the sum is calculated within				
	a window of 3×5 cells				
	Ratio of the energy in 3×3 cells over the energy in 3×7 cells centered at the	R_{ϕ}			
	electron cluster position				
	Ratio of the energy in 3×7 cells over the energy in 7×7 cells centered at the	R_{η}			
	electron cluster position				
Strip layer of	Ratio of the energy difference between the largest and second largest energy	Eratio			
EM calorimeter	deposits in the cluster over the sum of these energies				
	Ratio of the energy in the strip layer to the total energy in the EM accordion	f_1			
	calorimeter				
Track quality	Number of hits in the innermost pixel layer (the newly added B layer),	n _{Blayer}			
	discriminates against photon conversions				
	Number of hits in the pixel detector	n _{Pixel}			
Middle layer of EM calorimeter Strip layer of EM calorimeter	Number of total hits in the pixel and SCT detectors	n _{Si}			
	Transverse impact parameter with respect to the beamspot	d_0			
	Significance of transverse impact parameter defined as the ratio of d_0	σ_{d_0}			
	and its uncertainty				
	Momentum lost by the track between the perigee and the last	$\Delta p/p$			
	measurement point divided by the original momentum				
TRT	Likelihood probability based on transition radiation in the TRT	TRTP			
Track-cluster	$\Delta\eta$ between the cluster position in the strip layer and the extrapolated track	$\Delta \eta_1$			
matching	$\Delta \phi$ between the cluster position in the middle layer and the extrapolated	$\Delta \phi_{\rm res}$			
	track, where the track momentum is rescaled to the cluster energy				
	before extrapolating the track to the middle layer of the calorimeter				

W/Z cross sections

ℓ^{\pm}	Observed	Background	Background	Background-subtracted
	candidates	(EW+top)	(Multijet)	events $N_W^{\rm sig}$
e^+	256923	10100 ± 600	$15200 \pm 300 \pm 6700$	$231600 \pm 500 \pm 6700$
<i>e</i> ⁻	206140	8900 ± 500	$15600 \pm 300 \pm 6900$	$181600 \pm 500 \pm 6900$
μ^+	272841	20420 ± 920	$12200 \pm 200 \pm 3500$	$240300 \pm 500 \pm 3600$
μ^{-}	214249	18210 ± 830	$11500 \pm 100 \pm 3100$	$184500 \pm 500 \pm 3200$

ℓ^{\pm}	Observed	Background	Background	Background-subtracted
	candidates	(EW+top)	(Multijet)	events $N_Z^{\rm sig}$
e^{\pm}	34955	$229 \pm 1 \pm 24$	< 0.1%	$34730 \pm 190 \pm 20$
μ^{\pm}	44899	$296 \pm 2 \pm 31$	< 0.1%	$44600 \pm 210 \pm 30$

Nicola Orlando (AUTh, HKU)

W/Z cross sections

Process	$Z \rightarrow \mu^+ \mu^-$	$W^+ \to \mu^+ \nu$	$W^- \to \mu^- \overline{\nu}$	$Z \rightarrow e^+ e^-$	$W^+ \rightarrow e^+ \nu$	$W^- \to e^- \overline{\nu}$
$\delta C/C \ (\%)$						
Electron Trigger	_	_	_	0.5	3.0	3.2
Electron Reconstruction, Identification	_	—	_	3.8	2.0	2.1
Electron Isolation	_	—	_	1.0	0.5	0.5
Electron Scale and Resolution	_	—	_	0.2	0.4	0.5
Charge Identification	_	—	_	0.8	0.1	0.1
Muon Trigger	1.0	2.0	2.0	_	_	—
Muon Reconstruction, Identification	0.9	0.4	0.4	_	_	—
Muon Isolation	0.5	0.3	0.3	_	_	—
Muon Scale and Resolution	0.1	0.1	0.1	_	_	—
JES and JER	_	1.5	1.5	_	1.9	1.8
MET Soft Term	_	0.1	0.1	_	0.1	0.1
Pileup Modeling	0.9	1.2	1.2	0.9	1.4	1.4
Total	1.7	2.8	2.8	4.1	4.4	4.5

W/Z cross sections

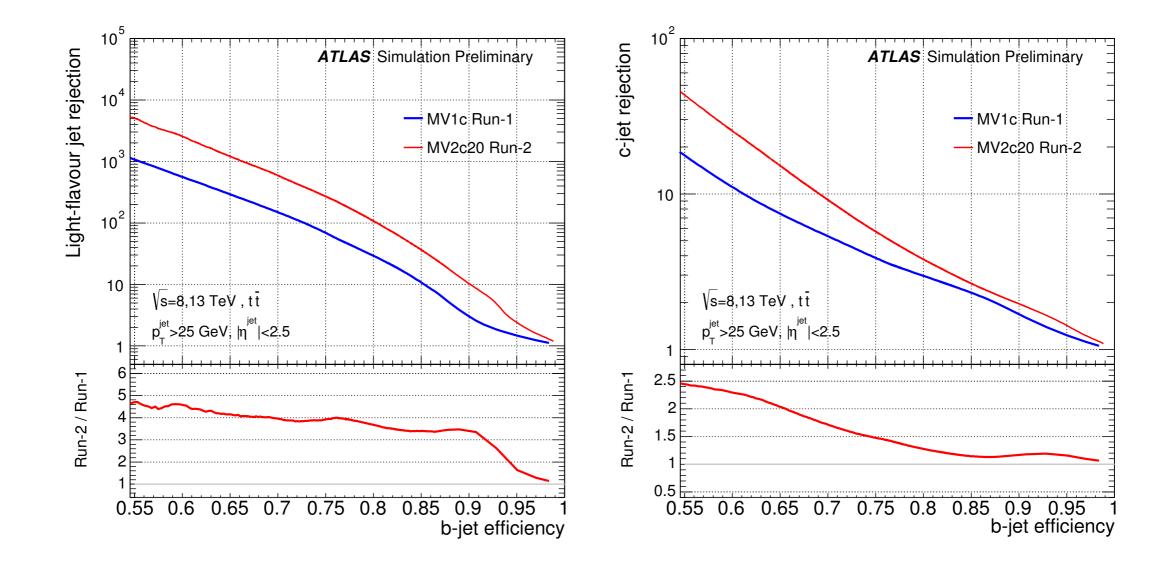
Channel	value ± stat ± syst ± lumi
	[pb]
W^-	$8380 \pm 20 \pm 350 \pm 750$
W^+	$10960 \pm 20 \pm 440 \pm 990$
W^{\pm}	$19350 \pm 20 \pm 760 \pm 1740$
Ζ	$1869 \pm 7 \pm 42 \pm 168$

Z+jets

	σ	± stat	± syst	± lumi				
N _{jet}	[pb]							
<u>≥</u> 1	115.7	1.3	4.9	10.4				
≥ 2	27.0	0.6	1.4	2.4				
≥ 3	5.8	0.3	0.4	0.5				
<u>≥</u> 4	1.40	0.14	0.11	0.13				

43

Generators


Physics process	Generator	$(\sigma \cdot BR)[pb]$	Order	Reference
$Z \to \ell^+ \ell^- + \text{jets} \ (m_{\ell\ell} > 40 \text{ GeV})$	Sherpa v2.1.1	$2091 \pm 5\%$	NNLO	[16–19]
$Z \to \ell^+ \ell^- + \text{jets} \ (m_{\ell\ell} > 40 \text{ GeV})$	MadGraph5	$2091 \pm 5\%$	NNLO	[16–19]
$W \rightarrow \ell \nu (\ell = e, \mu, \tau)$	Powheg +Pythia 8	$20400 \pm 5\%$	NNLO	[16–19]
$Z \to \ell^+ \ell^- (m_{\ell\ell} > 60 \text{ GeV})$	Powheg +Pythia 8	$1979 \pm 5\%$	NNLO	[16–19]
$t\bar{t}$ ($m_t = 172.5 \text{ GeV}$)	Powheg +Pythia 6	$830 \pm 6\%$	NNLO+NNLL	[26]
Dibosons	Sherpa	$99 \pm 6\%$	NLO	[6]
Dijet (<i>e</i> channel, $\hat{p}_{T} > 21 \text{ GeV}$)	Рутніа 8	180×10^{3}	LO	[13]
$b\overline{b}$ (μ channel, $\hat{p}_{\rm T} > 15$ GeV)	Рутніа 8	188	LO	[13]
$c\overline{c} \ (\mu \text{ channel}, \hat{p}_{\mathrm{T}} > 15 \text{ GeV})$	Рутніа 8	58	LO	[13]

B-tagging inputs

Input	Variable	Description
Kinematics	$p_T(jet)$	Jet transverse momentum
Kinematics	$\eta(jet)$	Jet pseudo-rapidity
	$\log(P_b/P_{\text{light}})$	Likelihood ratio between the <i>b</i> - and light jet hypotheses
IP2D, IP3D	$\log(P_b/P_c)$	Likelihood ratio between the <i>b</i> - and <i>c</i> -jet hypotheses
	$\log(P_c/P_{\text{light}})$	Likelihood ratio between the <i>c</i> - and light jet hypotheses
	m(SV)	Invariant mass of tracks at the secondary vertex assuming
		pion masses
	$f_{\rm E}({ m SV})$	Fraction of the charged jet energy in the secondary vertex
CV	$N_{\mathrm{TrkAtVtx}}(\mathrm{SV})$	Number of tracks used in the secondary vertex
SV	$N_{2\mathrm{TrkVtx}}(\mathrm{SV})$	Number of two track vertex candidates
	$L_{xy}(SV)$	Transverse distance between the primary and secondary
		vertices
	$L_{xyz}(SV)$	Distance between the primary and secondary vertices
	$S_{xyz}(SV)$	Distance between the primary and secondary vertices di-
		vided by its uncertainty
	$\Delta R(\text{jet}, \text{SV})$	ΔR between the jet axis and the direction of the secondary
		vertex relative to the primary vertex
	$N_{2\mathrm{TrkVtx}}(\mathrm{JF})$	Number of 2-track vertex candidates (prior to decay chain
		fit)
	m(JF)	Invariant mass of tracks from displaced vertices assuming
Jet Fitter		pion masses
Jet I Ittel	$S_{xyz}(JF)$	Significance of the average distance between the primary
		and displaced vertices
	$f_{\rm E}({ m JF})$	Fraction of the charged jet energy in the secondary vertices
	$N_{1-\text{trk vertices}}(\text{JF})$	Number of displaced vertices with one track
	$N_{\geq 2\text{-trk vertices}}(JF)$	Number of displaced vertices with more than one track
	$N_{\mathrm{TrkAtVtx}}(\mathrm{JF})$	Number of tracks from displaced vertices with at least two
		tracks
	$\Delta R(\vec{p}_{jet},\vec{p}_{vtx})$	ΔR between the jet axis and the vectorial sum of the mo-
		menta of all tracks attached to displaced vertices

Nicola Orlando (AUTh, HKU)

B-tagging

Τορ εμ

Uncertainty	$\Delta \epsilon_{e\mu} / \epsilon_{e\mu}$	$\Delta C_b/C_b$	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$
-	(%)	(%)	(%)
Data statistics			6.0
tt NLO modelling	1.9	-0.3	2.2
$t\bar{t}$ hadronisation	-4.0	0.5	4.5
Initial/final state radiation	-1.1	0.1	1.2
Parton distribution functions	1.3	-	1.4
Single-top generator*	-	-	0.5
Single-top/tt interference*	-	-	0.1
Single-top Wt cross-section	-	-	0.5
Diboson modelling*	-	-	0.1
Diboson cross-sections	-	-	0.0
Z+jets extrapolation	-	-	0.2
Electron energy scale/resolution	0.2	0.0	0.2
Electron identification	3.6	0.0	4.0
Electron isolation	1.0	-	1.1
Muon momentum scale/resolution	0.0	0.0	0.1
Muon identification	1.1	0.0	1.2
Muon isolation	1.0	-	1.1
Lepton trigger	1.3	0.0	1.3
Jet energy scale	-0.3	0.0	0.3
Jet energy resolution	-0.1	0.0	0.1
<i>b</i> -tagging	-	0.1	0.3
Misidentified leptons	-	-	1.3
Analysis systematics	6.4	0.6	7.3
Integrated luminosity	-	-	10.0
Total uncertainty	6.4	0.6	13.7

Nicola Orlando (AUTh, HKU)

XLV International Symposium on Multiparticle Dynamics 47

Тор

Uncertainty (%)	$\sigma_{Z \to ee}$	$\sigma_{Z \to \mu\mu}$	$\sigma_{t\bar{t}}$	$R_{t\bar{t}/Z}$
Data statistics	0.5	0.5	6.0	6.0
<i>tī</i> NLO modelling	-	-	2.2	2.2
<i>tī</i> hadronisation	-	-	4.5	4.5
Initial/final state radiation	-	-	1.2	1.2
Parton distribution functions $(t\bar{t}, Wt)$	-	-	1.4	1.4
Single-top modelling	-	-	0.5	0.5
Single-top/ $t\bar{t}$ interference	-	-	0.1	0.1
Single-top Wt cross-section	-	-	0.5	0.5
Diboson modelling	-	-	0.1	0.1
Diboson cross-sections	-	-	0.0	0.0
Z+jets extrapolation	-	-	0.2	0.2
Electron energy scale/resolution	0.2	-	0.2	0.1
Electron identification	3.8	-	3.2	1.3
Electron charge identification	0.8	-	-	0.4
Electron isolation	1.0	-	1.1	1.2
Muon momentum scale/resolution	-	0.1	0.1	0.0
Muon identification	-	0.9	0.5	0.1
Muon isolation	-	0.5	1.1	1.1
Lepton trigger	0.5	1.1	0.8	0.7
Jet energy scale	-	-	0.3	0.3
Jet energy resolution	-	-	0.1	0.1
<i>b</i> -tagging	-	-	0.3	0.3
Misidentified leptons	-	-	1.4	1.4
Pileup modelling	0.9	0.9	-	0.9
Z acceptance	1.5	1.5	-	1.5
Z backgrounds	0.1	0.1	-	0.1
Analysis systematics	4.4	2.3	6.7	6.3
Integrated luminosity	9.0	9.0	10.0	1.0
Total uncertainty	10.0	9.3	13.5	8.8

	Di-lep			I+jets		
Uncertainty		$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} (\%)$	Uncertainty		$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} (\%)$	•
Data statistics	\$	7.6	Data statistics	Data statistics		•
tī NLO model	lling	2.6	<i>tī</i> NLO modellir	lā	0.6	•
tt hadronisatio	on	7.9	$t\bar{t}$ hadronisation	-0	4.1	
Initial/final sta	ate radiation	1.5	Initial/final state	radiation	1.9	
PDF		3.7	PDF	iuuiution	0.7	
Single-top Wt	t cross-section	0.6	Single top cross-	section	0.3	
Single-top int	erference	< 0.05	Diboson cross-se		0.2	
Diboson cross	s-section	0.4			0.2 1.0	
Z +jets $\rightarrow ee/p$		1.5	Z+jets cross-sec			
Z +jets $\rightarrow \tau \tau$ i	-	0.1	W+jets method		1.7	
Electron energy		0.3	W+jets modelling		1.0	
Electron energy		0.2	Electron energy		0.1	
Electron ident		3.6	Electron identifi		2.1	
Electron trigg		0.2	Electron isolation		0.4	
Electron isola		1.0	Electron trigger		2.8	
Muon momen		0.1	Muon momentum scale/resolution		0.1	
	tum resolution	1.1	Muon identification		0.2	
Muon identifi	cation	0.8	Muon isolation		0.3	
Muon trigger		0.6	Muon trigger		1.2	
Muon isolatio		1.0	$E_{\rm T}^{\rm miss}$ scale/resol	ution	0.4	
Jet energy sca		1.2	Jet energy scale		$^{+10}_{-8}$	
Jet energy res		0.2	Jet energy resolution		0.6	
<i>b</i> -tagging effic	•	0.8	<i>b</i> -tagging		4.1	
•	verse momentum	0.3	NP & fakes		1.8	
NP & fakes		1.5			+13	•
Analysis syste	ematics	11	Analysis systematics		-11	-
Integrated lun	ninosity	10	Integrated lumin	osity	+11 -9	_
Total uncertai	nty	16	Total uncertainty	y	+17 -14	

Nicola Orlando (AUTh, HKU)

XLV International Symposium on Multiparticle Dynamics