# Recent forward physics and diffraction results from CMS

#### Gabor Veres (CERN) on behalf of the CMS Collaboration



ISMD 2015 Conference, Wildbad Kreuth, Germany October 5<sup>th</sup>, 2015

gabor.veres@cern.ch



# Outline

- CMS: forward instrumentation
- Diffraction:
  - single- and double-diffractive (RG) cross sections
  - DD-dominated sample: xsec using a central rapidity gap
  - forward rapidity gap cross sections
- Hard color-singlet exchange (CSE):
  - dijet events with a large rapidity gap
  - fraction of CSE events measured
    - as a function of the subleading jet  $p_{T}$
    - as a function of the rapidity gap

# **CMS and TOTEM Experiments**

#### Excellent instrumentation at high η ("forward")



CT-PPS: from 2016

## Soft diffraction at 7 TeV

- Diffraction: ~22% of inelastic cross section (14 mb/64.5 mb)
- Large rapidity gap (LRG). Pomeron: color singlet
- Predictions based on Regge theory, extrapolations to LHC
- Important to improve models, event generators, MB and UE predictions, etc.
- SD and DD separated with CASTOR: -6.6<η<-5.2</li>



# Models, MC simulations

Used for corrections: resolutions, acceptance, migration, etc.

- PYTHIA 8.165: inelastic events
- PYTHIA-MBR: extract cross sections (extrapolation to low mass).
  Phenomenological renormalized Regge model. Successful at CDF.
  DD ↓15%
- PYTHIA 8 4C: Schuler-Sjostrand model, diffractive cross section adjusted: SD ↓10%, and DD ↓12%
- $M_{\chi}$ ,  $M_{\gamma}$ : separated by the largest rapidity gap
- Data:
  - 2010, 16.2/µb, pileup=0.14
  - trigger: zero bias + any BSC hit (and at least 2 Particle Flow objects). Acceptance: 90% if  $M_x$  or  $M_y$ >12.6 GeV
  - $\circ$  no vertex required

# **Diffractive topologies**



# $\eta_{min}$ and $\Delta\eta^0$ distributions

- Distribution of  $\eta_{min}$  and  $\Delta \eta^0$  in the selected events:
- ND: exponential suppression of rapidity gap
- large gaps: dominated by diffractive events
- cuts to enhance SD and DD:  $\eta_{min}$ >-1 and  $\Delta \eta^0$  >3.



#### Acceptance

#### Based on PYTHIA 8 MBR for true DD events:



#### **Forward RG xsec: variables**

The forward rapidity gap xsec is measured vs  $\xi_x$ :

Experimentally, this is approximated by (using PF objects in the detector, where the dissociated system is in the + or - side):  $\xi_X = \frac{M_X^2}{s}$ 



The correlation of reconstructed and generated variables for SD2 events:

(correction using MBR)



# **ξ distributions in the FG2 sample**



FG2 sample

FG2 sample, with empty CASTOR

FG2 sample, with some energy in CASTOR

SD dominates

DD dominates

### **Forward Gap cross sections**



gabor.veres@cern.ch

#### **Double diffractive-enhanced xsec**

Variables:  $\Delta \eta = -\log \xi$   $\xi = M_X^2 \cdot M_Y^2 / (s \cdot m_p^2)$ Detector level:  $\Delta \eta^0 = \eta^0_{max} - \eta^0_{min}$ Correction to translate between the two: from MC (MBR) Integral:  $0.58 \pm 0.01 (\text{stat})^{+0.13}_{-0.11} (\text{syst}) \text{ mb}$ 



gabor.veres@cern.ch

# **Total diffractive cross sections at 7 TeV**

- Background subtraction. Main bg sources:
  - no-CASTOR: DD
  - CASTOR: ND

Measurements extrapolated to total single (SD) and double (DD) diffractive cross sections:

- using PYTHIA 8 MBR
- extrapolation around a factor of 2 needed



# **Rapidity gap cross section**

Forward rapidity gap: largest distance between detector edge ( $|\eta|=4.7$ ) and first Particle Flow object:  $\Delta \eta^{F}$ 

Correction for bg (circulating beams), migrations.

PU=0.0066. Particle level cut:  $p_T$ >200 MeV/c,  $|\eta|$ <4.7.



gabor.veres@cern.ch

# **Dijets with large rapidity gap, 7 TeV**

- Dijet production: normally quark or gluon exchange  $\rightarrow$  color field  $\rightarrow$ hadron production between the two jets (in  $\eta$ )
- BFKL model: experimentally accessible with two jets with large rapidity gap, and no particles between them.
- Color singlet exchange (CSE): Pomeron or gluon ladder

#### • Data:

- jets: p<sub>T</sub>>40 GeV, 1.5<|η|<4.5</li>
- particles (veto):  $|\eta| < 1$ ,  $p_T > 200$  MeV
- Data: 2010, 8/pb, pileup = 1.16 1.60
- vertex: 0 or 1



- MC:
  - dijets: PYTHIA 6 Z2\* (LO DGLAP), MPI, ISR, FSR
  - jet-gap-jet MC: Herwig6 (CSE Muller-Tang, LL BFKL), no MPI. (JIMMY: MPI). Reweighting.

# Charged particle multiplicity in the gap



### **CSE event features**



17

## **CSE fraction**

- Definition:  $f_{CSE} = \frac{N_{events}(S) N_{bkg}(S)}{N_{events}}$
- Background subtraction:
  - $\circ$  "same-sign" sample: jets in the same  $\eta$  hemisphere
  - Negative Binomial fit to the "opposite sign" sample



gabor.veres@cern.ch

# CSE fraction vs. subleading jet $p_{T}$

- Factor of ~2 lower than at Tevatron at 1.8 TeV
  - (stronger rescattering at high energy)
- modest increase with subleading jet  $p_{\tau}$



gabor.veres@cern.ch

# **CSE fraction vs. rapidity gap**

- Fraction increases with Δη
- Muller-Tang model does not reproduce this increase and underestimates the data



# Summary

- CMS has an active forward and diffractive physics program
- CMS forward instrumentation is unique, complemented by the TOTEM experiment and the CASTOR calorimeter
  - a joint physics program and data taking is underway
  - CT-PPS will take off next year: tagging diffraction and CEP at high luminosity. Common CMS-TOTEM data with Roman Pot coincidences this year (next week).
- SD and DD cross sections measured at 7 TeV
  - gap cross sections measured as a function of "fractional proton momentum loss" and central and forward gap width
- Jet-gap-jet events at 7 TeV:
  - first time at the LHC
  - dijet events with a gap are not consistent with LO DGLAP
  - CSE observed.
  - CSE fraction rises with p<sup>2</sup> and decreases with energy 21

