Underlying event and correlation results from CMS

Wei Yang Wang
National University of Singapore (NUS)
On behalf of the CMS Collaboration
ISMD2015
05/10/2015
Outline

1. Underlying event
   i. Data/MC samples
   ii. Underlying event Results

2. 2-particle correlations
   i. 2-particle correlation results in pp collisions
Underlying Event

The underlying event:
- Additional activity on top of the hard scattering component of the collision

MPI, ISR/FSR, hadronisation, colour reconnections, beam remnants, soft rescattering of beam remnants etc...
Underlying Event

Multi-parton Interactions (MPI):

◦ Not just a pair of partons interacting

◦ $N(b) \sim \text{Poisson}(b)$
  ◦ Number of MPI assumed to be Poissonian, with an impact parameter dependence

◦ Smaller impact parameter $\Rightarrow$ higher probability of MPI + bias towards harder interactions and thus jets, and vice versa

◦ Jets serve as good probes of MPI and thus UE

◦ In collisions with the smallest impact parameters, the number of MPIs saturate

---

doi:10.1140/epjc/s10052-010-1453-9
Underlying Event

Towards region: $|\Delta \phi| < 60^\circ$
Away region: $|\Delta \phi| > 120^\circ$
Transverse region: $60^\circ < |\Delta \phi| < 120^\circ$

**UE observable:**

$\langle N_{ch} \rangle / [\Delta \eta \Delta (\Delta \phi)], \langle \Sigma p_T \rangle / [\Delta \eta \Delta (\Delta \phi)]$

**TransMAX(TransMIN):** activity in maximum(minimum) activity side of transverse region

**TransDIF:** ($\text{TransMAX} - \text{TransMIN}$) activity
- Sensitive to ISR/FSR

Reference hard direction
Leading charged-particle jet

ISR/FSR +MPI/BBR
MPI/BBR
Data samples

Measured at 0.9, 7 TeV, and recently at 2.76 TeV:

Data samples @ 2.76 TeV:
- Dedicated run of a few days in March 2011 (0.3 $n b^{-1}$)
- Low pile-up run especially suited for studying UE

3 different triggered samples
- Minimum bias
- Jet20 (1 jet with $p_T > 20$ GeV)
- Jet40 (1 jet with $p_T > 40$ GeV)

Transverse density

DOI: 10.1140/epjc/s10052-010-1453-9
DOI: 10.1007/JHEP09(2011)109
Monte Carlo samples

Monte Carlo samples:
- Validation and correction:
  - PYTHIA 6 Z2
- Model dependent systematic:
  - PYTHIA 8 4C
- comparison with data:
  - PYTHIA 6 (version 6.426): Z2*, CUETP6S1
  - PYTHIA 8 (version 8.175): 4C, CUETP8S1, Monash, CUETP8M1
  - HERWIG++ (version 2.7.0): UE-EE-5C

PYTHIA/HERWIG differences (same parton density function, CTEQ6L1):
- Details of interleaving between ISR/FSR/MPI
- $p_T$-ordered/angular-ordered evolution
- Lund string/cluster hadronisation
- Tunable parameters in all MC are optimised with different datasets
Transverse densities

Clear transition between a rising and a plateau region.
Comparison with PYTHIA6 (Z2*, CUETP6S1), PYTHIA8 (4C, CUETP8S1), HERWIG++ (UE-EE-5C).
Best performing: Z2*, CUETP6S1, CUETP8S1, (UE-EE-5C performing pretty well, but slightly overestimating the transverse densities).

TransMAX/MIN particle densities

More distinct transition from rising to plateau region in transMIN particle density supporting hypothesis that the activity is dominated by MPI/BBR. TransMAX shows a slow rise. All tunes perform reasonably well for transMAX particle density. CUET tunes perform the best in both transMAX and transMIN densities.

Energy densities in appendix

All tunes do better for *transDIF* densities. CUET tunes are performing best overall, Z2* describes $\Sigma p_T$ density well. Herwig++ describing the densities well, especially $\Sigma p_T$ density. *TransDIF* activity rising faster in “plateau” region due to sensitivity to ISR/FSR.

Energy dependence

Center-of-mass energy dependence compared with Z2*, CUETP8S1 and UE-EE-5C. Strong growth of UE activity at similar values of leading jet $p_T$. All tunes predict the center-of-mass energy dependence well.

2-particle correlations

Originally used to probe for hydrodynamics in heavy ion collisions

Non-uniform emission of particles

- Different initial collision geometry give rise to different flow effects
2-particle correlations

Interested in ridge structure in $(\Delta \eta, \Delta \phi)$
- Mostly in the long range ($|\Delta \eta| > 2$), near side ($\Delta \phi \approx 0$) region

2D correlation functions reveal information on the origins of the correlation:
- **Jets:**
  - peak around (0, 0)
- **Back-to-back jet + hydrodynamic flow:**
  - Ridge structures around $\Delta \phi = 0$ and $\Delta \phi = \pi$

\[ \text{doi:10.1016/j.physletb.2013.06.028} \]
2-particle correlations

Interested in ridge structure in $(\Delta \eta, \Delta \phi)$
- Mostly in the long range $(\Delta \eta > 2)$, near side $(\Delta \phi \approx 0)$ region

2D correlation functions reveal information on the origins of the correlation:
- **Jets:**
  - peak around $(0, 0)$
- **Back-to-back jet + hydrodynamic flow:**
  - Ridge structures around $\Delta \phi = 0$ and $\Delta \phi = \pi$
  - Long range near side structures not seen in low multiplicity pp collisions

\[ \sqrt{S_{pp}} = 7 \, \text{TeV} \]

2-particle correlations

Interested in ridge structure in $(\Delta \eta, \Delta \phi)$
- Mostly in the long range ($\Delta \eta > 2$), near side ($\Delta \phi \approx 0$) region

Structure of 2D correlation function reflect information on the origins of the correlation:
- **Jets:**
  - peak around $(0, 0)$
- **Back-to-back jet + hydrodynamic flow:**
  - Ridge structures around $\Delta \phi = 0$ and $\Delta \phi = \pi$
  - Long range near side structures not seen in low multiplicity pp collisions
  - Origins of the ridge in high multiplicity pp collisions remains unknown

Hydrodynamic flow? Colour glass condensate glasma?

\[ \sqrt{s_{pp}} = 7 \text{ TeV} \]
Results

Long range near side ridge in high multiplicity ($N_{\text{trk}}^{\text{offline}} \geq 105$) events

Early run 2 data: $\sqrt{s_{pp}} = 13$ TeV, $L \sim 270$ nb$^{-1}$

CMS-FSQ-15-002

new!
Results

Long range near side correlation yields become significant at a multiplicity $\sim 40$

Nearly linear increase above 40

No centre-of-mass energy dependence

Results consistent with glasma+BFKL predictions but diverges for $N_{\text{trk}}^{\text{offline}} > 90$
Results

Correlation yields become significant at a multiplicity $\sim 40$ and nearly linear increase above 40 for all collision systems.

Strong system size dependence.

CMS

$\Delta$ PbPb $\sqrt{s} = 2.76$ TeV

$\Delta$ pPb $\sqrt{s} = 5.02$ TeV

$\bullet$ pp $\sqrt{s} = 13$ TeV

$\circ$ pp $\sqrt{s} = 7$ TeV

$2.0 < |\Delta \eta| < 4.0$

$1.0 < p_T < 2.0$ GeV/c

$N_{\text{offline}}^{\text{trk}}$
Results

$$\sqrt{s_{pp}} = 7 \text{ TeV}$$

$$(110 \leq N_{\text{trk}_{\text{offline}}} < 150)$$

With identified particles:
- $$(K_S^0 - h^\pm), (\Lambda/\bar{\Lambda} - h^\pm), (h^\pm - h^\pm)$$

Refer to Z. Chen, “New results on collective phenomena in small colliding systems at CMS” on measurement of $v_n$
Summary

The CMS collaboration has measured a range of phenomena relating to multi-particle dynamics and collective phenomena.

Recent results from the underlying event at 2.76 TeV have been measured and fully corrected for detector effects and selection efficiencies for the transverse, transMIN, transMAX and transDIF densities.

- Separation into various transverse activities allows for better sensitivities to ISR/FSR and MPI/BBR.
- Measurement at 13 TeV ongoing.

Results are compared to various PYTHIA6, PYTHIA8 and HERWIG++ Monte Carlo tunes.

Comparison is made with the underlying event at 0.9 and 7 TeV for transverse densities.

- Allows for better tuning of energy dependence of the MC.
Summary

2-particle correlations in pp collisions have been measured at 13 TeV, echoing previous results at 7 TeV.

Correlation yields consistent with 0 for $N_{trk}^{offline} < 40$ and increases roughly linearly beyond that.

Yields show no centre-of-mass dependence but a strong collision system size dependence.

Further analysis on 2-particle correlations between identified particles from pp collisions at 7 TeV reveal similar long range near side ridge structures.
Thank you for your attention!
UE Appendix: pQCD regularisation in MC

Leading order pQCD $2 \rightarrow 2$ cross section divergence term:

- $\frac{1}{p_T^4} \rightarrow \frac{1}{(p_T^2 + p_{T0}^2)^2}$

- $p_{T0}(\sqrt{S}) = p_{T0}^{REF} \times \left(\frac{\sqrt{S}}{E_0}\right)^\epsilon$

- Tunable MC parameters: $p_{T0}^{REF}, E_0, \epsilon$
UE Appendix:
Event and track/jet selections

Event selection:
- 1 vertex (within 10 cm of beamspot)

Track selection (remove mis-reconstructed tracks):
- *Highpurity* tracks
- $p_T > 0.5$ GeV, $|\eta| < 2.0$

Impact parameter cut (remove secondary decays):
- $\frac{dz}{\sqrt{\sigma(dz)^2 + \sigma(vtx.z)^2}} \leq 3$
- $\frac{d(xy)}{\sqrt{\sigma d(xy)^2 + \sigma(vtx.x)^2 + \sigma(vtx.y)^2}} \leq 3$
- $\frac{\sigma(p_T)}{p_T} \leq 0.05$

Same tracks used for jet seeding only with $|\eta| < 2.5$:
- Leading track-jet (SisCone: $R = 0.5$; using tracks with $p_T > 0.5$ GeV and $|\eta| < 2.5$)
- $p_T > 1$ GeV, $|\eta| < 2.0$
UE Appendix:
Data Correction and systematics

Data corrected with unfolding
- Iterative “Bayesian” method

\[
\begin{align*}
\left(X_{\text{Tracks}}, p_{T\text{Leading TrackJet}}\right)_{2D} &\xrightarrow{\text{unfold}} \left(X_{\text{Particles}}, p_{T\text{Leading GenJet}}\right)_{2D} &\xrightarrow{\text{profile}} &\left((X_{\text{Particles}}, p_{T\text{Leading GenJet}})_{\text{Profile}}\right)
\end{align*}
\]

Summary of systematic uncertainties:

<table>
<thead>
<tr>
<th>Source</th>
<th>Systematic (%)</th>
<th>Source</th>
<th>Systematic (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact Parameter Sig.</td>
<td>0.6-4</td>
<td>Dead Channel</td>
<td>0.1</td>
</tr>
<tr>
<td>Track sel.</td>
<td>0.1-0.8</td>
<td>Beamspot</td>
<td>0.2</td>
</tr>
<tr>
<td>Fake Mis-modelling</td>
<td>0.4-0.6</td>
<td>Material Budget</td>
<td>1.0</td>
</tr>
<tr>
<td>Model dep.</td>
<td>0.2-4</td>
<td>Tracker Alignment</td>
<td>0.2-0.3</td>
</tr>
</tbody>
</table>
All tunes perform reasonably well. 4C has least agreement. More distinct transition from rising to plateau region in transMIN particle density supporting hypothesis that the activity is dominated by MPI/BBR. TransMAX shows a slow rise.

2PC Appendix: $\Delta\phi$ correlation

$\sqrt{s_{pp}} = 13$ TeV

Difference seen between 7 TeV and 13 TeV results at low multiplicity and high-$p_T$ due to different definition of 2-particle correlation function

CMS-FSQ-15-002
2PC Appendix: systematic

$\sqrt{s_{pp}} = 13$ TeV

Uncertainty in the long range near side associated yields

<table>
<thead>
<tr>
<th>Systematic uncertainty sources</th>
<th>Absolute uncertainty values ($\times 10^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track quality requirements</td>
<td>0.6</td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>1.5</td>
</tr>
<tr>
<td>Correction for tracking efficiency</td>
<td>$&lt; 0.08$</td>
</tr>
<tr>
<td>Effect of pile-up events</td>
<td>0.6</td>
</tr>
<tr>
<td>Vertex selection</td>
<td>1.0</td>
</tr>
<tr>
<td>ZYAM procedure</td>
<td>0.7</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>2.1</strong></td>
</tr>
</tbody>
</table>

CMS-HIN-15-009
2PC Appendix: signal yield

\[
\frac{dN}{d\Delta \phi} \sim 1 + 2 \sum_{n=1}^{N} V_{n \Delta} \cos n\Delta \phi,
\]

\[
v_n(p_{T}^{\text{trig}}) = \frac{V_{n \Delta}(p_{T}^{\text{trig}}, p_{T}^{\text{ref}})}{\sqrt{V_{n \Delta}(p_{T}^{\text{ref}}, p_{T}^{\text{ref}})}}
\]
2PC Appendix: $\nu_n$

\[ \nu_n(p_T^{\text{trig}}) = \frac{\nu_n(p_T^{\text{trig}}, p_T^{\text{ref}})}{\sqrt{\nu_n(p_T^{\text{ref}}, p_T^{\text{ref}})}} \]

- $\nu_2(\text{pp}) < \nu_2(\text{pPb}) < \nu_2(\text{PbPb})$
- $\nu_3(\text{pp}) \approx \nu_3(\text{pPb}) \approx \nu_3(\text{PbPb})$, but $\nu_3(\text{pp})$ deviates for $N_{\text{offline}}^{\text{trk}} \gtrsim 90$
- Mass ordering for $\nu_2^{\text{sub} \{2\}}$ at low $p_T$

Flow parameter analysis

CMS pp $\sqrt{s} = 7$ TeV

1. $|\Delta \eta| > 2$
2. $110 \leq N_{\text{offline}}^{\text{trk}} < 150$

CMS-HIN-15-009

CMS Preliminary

- pp $\sqrt{s} = 7$ TeV, no sub.
- pp $\sqrt{s} = 7$ TeV

$0.3 < p_T < 3$ GeV/c

$|\Delta \eta| > 2$