XLV International Symposium on Multiparticle Dynamics Wildbad Kreuth, 4-9 Oct 2015

Multiplicity dependence of strange and multistrange hadron production in pp collisions at vs=7 TeV measured with the ALICE experiment

> **Rafael Derradi de Souza** *For the ALICE Collaboration*

> > UNICAMP – Brazil

(supported by FAPESP Grant 2014/09167-8)

Outline

- Introduction
 - A-A, p-A and pp systems
- The ALICE Experiment
- Multiplicity Selection
 - Forward rapidity estimator
- Strange Hadron Measurements
 - K^0_{S} , Λ , Ξ and Ω
- Results
- Summary

 $p_{_{}_{}}$ (GeV/c)

- **TPC** (|η|<0.9)
- Gas-filled ionization detection volume
- Tracking, vertex, PID (dE/dx)

Detectors used in this analysis:

- **TPC** (|η|<0.9)
- Gas-filled ionization detection volume
- Tracking, vertex, PID (dE/dx)

ITS (|η|<0.9)

- 6 Layers of silicon detectors
- Trigger, tracking, vertex, PID (dE/dx)

Detectors used in this analysis:

TPC (|η|<0.9)

- Gas-filled ionization detection volume
- Tracking, vertex, PID (dE/dx)

ITS (|η|<0.9)

- 6 Layers of silicon detectors
- Trigger, tracking, vertex, PID (dE/dx)

V0 [V0A (2.8<η<5.1) & V0C (-3.7<η<-1.7)]

- Forward arrays of scintillators
- Trigger, beam gas rejection

TPC (|ŋ|<0.9) - Gas-filled ionization detection volume

- Tracking, vertex, PID (dE/dx)

ITS (|η|<0.9)

- 6 Layers of silicon detectors
- Trigger, tracking, vertex, PID (dE/dx)

Detectors used in this analysis:

V0 [V0A (2.8<η<5.1) & V0C (-3.7<η<-1.7)]

- Forward arrays of scintillators
- Trigger, beam gas rejection

Multiplicity Selection

- Event selection performed via percentiles of the VOM amplitude distribution (VOA + VOC)
- <dN_{ch}/dη> estimated as the average number of primary charged tracks in |η|<0.5

Strange Hadron Measurements

Strange Hadron Measurements

R.D. de Souza - ISMD 2015 - 7 October 2015

Strange Hadron Measurements

R.D. de Souza - ISMD 2015 - 7 October 2015

Results: p_T Spectra (I)

R.D. de Souza - ISMD 2015 - 7 October 2015

Results: p_T Spectra (I)

R.D. de Souza - ISMD 2015 - 7 October 2015

Results: p_T Spectra (II)

Results: p_T Spectra (II)

R.D. de Souza - ISMD 2015 - 7 October 2015

Rising trend of $\langle p_T \rangle$ as a function of multiplicity for all identified particles (dashed lines are logarithmic fits to guide the eye)

The dependence of the $\langle p_T \rangle$ with multiplicity shows the "hardening" of the spectra clearly

ALI-PREL-99175

Results: Λ/K_{S}^{0} vs p_{T} in pp

 Λ/K_{s}^{0} as a function of p_{T} for highest (0-1%) and lowest (70-100%) multiplicity selections compared to the multiplicityintegrated (0-100%) selection

- Clear separation between highest and lowest multiplicity selections
- → The position of the maximum is shifted
- ➔ The trend observed for the multiplicity-integrated case seems closer to the one observed for the highest multiplicity selection

Results: Λ/K_{S}^{0} vs p_{T} in pp, p-Pb, Pb-Pb

The dependence of the ratio with the event multiplicity in pp seems qualitatively similar to what is observed for p-Pb and Pb-Pb

Results: Λ/π vs multiplicity in pp

Consistent behavior observed between the results from pp and p-Pb

Good agreement with pp INEL at low multiplicities

GC saturation value reached in the higher multiplicities

Results: Λ/π vs multiplicity in pp

Consistent behavior observed between the results from pp and p-Pb

Good agreement with pp INEL at low multiplicities

GC saturation value reached in the higher multiplicities

Pythia 6 and 8 predictions using several tunes show strong disagreement with the observed trend in pp collisions

Effects of color reconnection (CR) in the simulation does not produce significant changes

Results: Ξ/π and Ω/π vs mult. in pp

- Similarly to what was shown for Λ/π, the trends observed for pp and p-Pb are very similar
- Pythia 6 and 8 predictions also show strong disagreement with the observed trend for Ξ/π and Ω/π
- Comparing to thermal model predictions (THERMUS/GSI-Heidelberg models), Ξ/π seems to reach the GC saturation value but Ω/π stays below

Results: pp and p-Pb scaled by ppINEL

The relative increase with multiplicity is more pronounced for baryons with higher strangeness content

The observed increase seems to be strangenessrelated rather than baryon-related since for protons the ratio remains constant up to the highest $<N_{ch}>$ probed

ALI-PREL-98972

Summary

- Measurements of strange and multi-strange hadrons have been performed as a function of charged-particle density in pp collisions at Vs = 7 TeV with the ALICE experiment
- The spectra shape are observed to become harder as one selects on higher multiplicity events
- The trend of Λ/K⁰_S vs p_T for different multiplicity selections observed in pp is similar to the corresponding observations in p-Pb and Pb-Pb
- Increase of yield ratios (Λ/π, Ξ/π, Ω/π) with multiplicity also follows the same trend observed in p-Pb
- Comparisons with predictions from Monte Carlo generators Pythia 6 and 8 show strong disagreement for all cases

Thank you for the attention!

Backup

R.D. de Souza - ISMD 2015 - 7 October 2015

(backup) Multiplicity Selection Classes

${ m K^0}_{ m S}$ and ${ m \Lambda}$		Ξ		Ω	
V0M Classes	$< dN_{ch}/d\eta >_{ \eta <0.5}$	V0M Classes	$< dN_{ch}/d\eta >_{ \eta <0.5}$	V0M Classes	<d<i>N_{ch}/dη>_{η <0.5}</d<i>
0-1%	21.29±0.04±0.64	0-1%	21.29±0.04±0.64	0 – 5%	17.47±0.02±0.52
1-5%	16.51±0.01±0.50	1-5%	16.51±0.01±0.50		
5 - 10%	13.46±0.01±0.35	5 - 10%	13.46±0.01±0.35	5 – 15%	12.48±0.01±0.38
10 - 15%	11.51±0.01±0.35	10 -15%	11.51±0.01±0.35		
15 – 20%	10.08±0.01±0.30	15 – 30%	8.99±0.01±0.27	15 – 30%	8.99±0.01±0.27
20 - 30%	8.45±<0.01±0.25				
30 - 40%	6.72±<0.01±0.21	30 – 50%	6.06±<0.01±0.19	30 – 50%	6.06±<0.01±0.19
40 – 50%	5.40±<0.01±0.17				
50 – 70%	3.90±<0.01±0.14	50 – 70%	3.90±<0.01±0.14	50 – 100%	2.89±<0.01±0.14
70 – 100%	2.26±<0.01±0.12	70 – 100%	2.26±<0.01±0.12		

(backup) π and p spectra

(backup) $2\phi/(\pi^++\pi^-)$ vs multiplicity

R.D. de Souza - ISMD 2015 - 7 October 2015

(backup) Acceptance × Efficiency

R.D. de Souza - ISMD 2015 - 7 October 2015