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B-E CORRELATIONS; STANDARD APPROACH

BOSE-EINSTEIN CORRELATION BETWEEN MOMENTA
OF TWO IDENTICAL HADRONS

C (p1, p2) ≡ N(p1, p2)

N(p1)N(p2)
(1)

IS USUALLY ANALYZED USING THE FORMULA

C (p1, p2) = 1 +
w̃(P12;Q)w̃(P12;−Q)

w(p1)w(p2)
= 1 +

|w̃(P12,Q)|2

w(p1)w(p2)
≥ 1 (2)

HERE w(p, x) IS THE SINGLE-PARTICLE
”DISTRIBUTION” (WIGNER FUNCTION) AND

w̃(P12;Q) =
∫
dx e iQxw(P12; x); w(p) =

∫
dx w(p; x)

P12 = (p1 + p2)/2; Q = p1 − p2,

ONE SEES THAT FROM C (p1, p2) ONE CAN GET
INFORMATION ON THE DISTRIBUTION IN x .



DATA L3(1)

Figure: HBT correlation function from L3; Two-jet events.



DATA L3(2)

Figure: L3 data for three-jet events.



DATA CMS 1

Figure: Two-pion correlation function from CMS (pp at 7 TeV)



DATA CMS 2

Figure: Two-pion correlation function for various multiplicities from CMS
(pp at 7 TeV)



GENERAL TWO PARTICLE CORRELATIONS

LET W (p1, p2; x1, x2) BE THE MOMENTUM AND SPACE
”DISTRIBUTION” OF TWO PARTICLES (”SOURCE
FUNCTION”). IF PARTICLES ARE IDENTICAL, THE
OBSERVED MOMENTUM DISTRIBUTION IS

Ω(p1, p2) =

∫
dx1dx2W (p1, p2; x1, x2) +

+

∫
dx1dx2e

i(x1−x2)QW (P12,P12; x1, x2) ≡

≡ Ω0(p1, p2)C (p1, p2) (3)

WHERE P12 = (p1 + p2)/2, Q = p1 − p2, AND

Ω0(p1, p2) =

∫
dx1dx2W (p1, p2; x1, x2) (4)



NO CORRELATIONS BETWEEN PARTICLES

IF THERE ARE NO CORRELATIONS BETWEEN
PARTICLES,

W (p1, p2; x1, x2) = w(p1, x1)w(p2, x2)

THEN Ω(p1, p2) = w(p1)w(p2) + |w̃(P12,Q)|2,

WHERE w̃(P12,Q) =
∫
dx w(P12, x)e ixQ .

THUS THE CORRELATION FUNCTION IS

C2(p1, p2) =
|w̃(P12,Q)|2

w(p1)w(p2)
≥ 1!!!! (5)

THIS IS THE COMMONLY USED FORMULA.

FROM w̃(P12,Q) ONE CAN RECOVER w(P12, x).

BUT: THIS IS VALID ONLY IF THERE ARE NO
INTER-PARTICLE CORRELATIONS.



CORRELATIONS IN SPACE (1)

IDEA: WHEN PIONS ARE TOO CLOSE TO EACH OTHER
THEY ARE NOT PIONS ANYMORE!!!
( BECAUSE THEIR CONSTITUENTS ARE MIXING AND
THEIR WAVE FUNCTIONS ARE NOT
WELL-DETERMINED).

SINCE HBT EXPERIMENTS MEASURE QUANTUM
INTERFERENCE BETWEEN THE WAVE FUNCTIONS OF
PIONS, THEY CANNOT SEE PIONS WHICH ARE TOO
CLOSE TO EACH OTHER.

THEREFORE THE TWO-PARTICLE DISTRIBUTION
W (P12,P12; x1, x2)

MUST VANISH AT SMALL |x1 − x2|, IMPLYING
CORRELATION BETWEEN POSITIONS OF TWO PIONS.



PICTURE



CORRELATIONS IN SPACE (2)

Repeat: W (P12,P12; x1, x2) MUST VANISH AT |x1 − x2| ≈ 0,
MEANING CORRELATION BETWEEN POSITIONS OF
TWO PIONS. THIS IS THE NECESSARY CONSEQUENCE
OF THE FUNDAMENTAL PROPERTY OF HADRONS:
THEY ARE NOT POINT-LIKE.

THUS THE TWO-PION DISTRIBUTION IS OF THE
FORM

W (P12,P12; x1, x2) = w(P12; x1)w(P12; x2)[1− D(x1 − x2)]. (6)

WHERE THE ”CUT-OFF” FUNCTION D(x1 − x2) EQUALS
1 AT SMALL (x1 − x2) (BELOW, SAY, 1 fm) AND
VANISHES AT LARGER DISTANCES.



CORRELATIONS IN SPACE (3)

THE HBT CORRELATION FUNCTION BECOMES:

C (P12,Q) = 1 +
|w̃(P12,Q)|2

w(p1)w(p2)
− Ccorr (p1, p2);

Ccorr =

∫
dx1dx2e

i(x1−x2)Qw(P12; x1)w(P12; x2)D(x1 − x2)

w(p1)w(p2)
(7)

ONE SEES THAT THE CORRELATED PART IS
NEGATIVE. MOREOVER, SINCE IT GETS
CONTRIBUTION ONLY FROM THE REGION OF SMALL
x , IT EXTENDS TO LARGER Q THAN THE FIRST,
UNCORRELATED, PART. CONSEQUENTLY, THE TOTAL
HBT CORRELATION FUNCTION IS EXPECTED TO BE
NEGATIVE AT LARGE ENOUGH Q.



EXAMPLE: AB&KZ, PLB727(2013)182

FOR ILLUSTRATION, TAKE

∆(x1 − x2) = Θ[r2
cut − |~x1 − ~x2|2 − (t1 − t2)2];
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Figure: Oscillating two-pion correlation function. R = rcut = τ = 1 fm.



MORE REALISTIC ESTIMATE: Blast wave model

STEP 1: Describe the p⊥ and multiplicity dependence of the
measured HBT radii in terms of the assumed size and shape
of the emission volume, ignoring the space-time correlations.
This allows to determine the parameters of the model.
The assumed shape: (i) fixed proper time τf =

√
t2 − z2;

f (r⊥) = e−(R−r⊥)2/d2
, corresponding to emission from a

”shell” of radius R and the ”width” d .
STEP 2: Introduce the space-time correlation (cut-off) and
evaluate the full correlation function.
We tried: (i) a Gaussian D = e−d

2/∆2
G ,∆G = 1 fm (where d is

the space-time distance between particles),
d2 = d2

⊥ + d2
‖ ; d‖ = τf (η1 − η2)

and (ii) a sharp cut-off in d at ∆s = 0.75 fm; There results
are very close.
STEP 3: verify that the description of the HBT radii is
unaffected. Checked, OK



Blast-wave model description of the HBT radii at 7 TeV

Figure: HBT radii [evaluated as the inverse slope of the correlation
function at Q2 = 0] compared to the ALICE data in pp collisions
at 7 TeV [BFZ, JOPhys. G42 (2015) 045001]



RESULTS: LONG

---- k⊥= 163 MeV, Nc = 12-16
_____ k⊥ = 547 MeV, Nc = 12-16

---- k⊥ = 163 MeV, Nc = 52-151
_____

k⊥ = 547 MeV, Nc = 52-151
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Figure: (Color online) Correlation function Cobs for the long direction in
the interval 0.2 GeV ≤ Q ≤ 0.8 GeV (normalized to 1 at Q= 1GeV). The
dashed lines describe the results for k⊥ = 163 MeV and the two
multiplicity classes: Nc = 12–16 and Nc = 52–151. The solid lines
describe the results for k⊥ = 547 MeV and the same two multiplicity
classes.



RESULTS: SIDE

---- k⊥= 163 MeV, Nc = 12-16
_____ k⊥ = 547 MeV, Nc = 12-16

---- k⊥ = 163 MeV, Nc = 52-151
_____

k⊥ = 547 MeV, Nc = 52-151
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Figure: The same as Fig. 1 but for the side direction.



RESULTS: OUT

---- k⊥= 163 MeV, Nc = 12-16
_____ k⊥ = 547 MeV, Nc = 12-16
---- k⊥ = 163 MeV, Nc = 52-151
_____ k⊥ = 547 MeV, Nc = 52-151
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Figure: The same as Fig. 1 but for the out direction.



COMMENTS

The presented argument shows that the (observed) values of
the HBT correlation function BELOW 1 are not accidental
but reflect the fundamental fact that hadrons are NOT
POINT-LIKE. Therefore this region of Q2 deserves special
attention.
Our calculations indicate that measurements of the
correlation functions in all three directions may reveal an
interesting pattern of complicated behaviour which hardly
can be described by simple gaussian fits. A detailed
experimental investigation of this region should allow to
determine (a) the validity of the presented approach and (b)
the size of the space-time cut-off, i.e. the distance at which
the hadron structure is affected by its neighbours.
Consequently, one can also learn about the DENSITY at
which the hadron gas starts melting into quarks and gluons.



DERIVATION OF THE HBT FORMULA (I)

Density matrix in momentum space:

ρ(p1, p2; p′1, p
′
2) =

=

∫
dx1dx2e

i(p1x1+p2x2)

∫
dx ′1dx

′
2e
−i(p′1x ′1+p′2x

′
2)ρ(x1, x2; x ′1, x

′
2) (8)

The particle distribution is

Ω(p1, p2) = ρ(p1, p2; p1, p2) (9)

The Wigner function:

W (p1, p2; x+
1 , x

+
2 ) =

∫
dx−1 dx−2 e i(p1x

−
1 +p2x

−
2 )ρ(x1, x2; x ′1, x

′
2) (10)

with

x+ = (x + x ′)/2; x− = x − x ′ (11)



DERIVATION OF THE HBT FORMULA (II)

Symmetrization:

ρ(p1, p2; p′1, p
′
2)→ ρ(p1, p2; p′1, p

′
2) + ρ(p1p2; p′2, p

′
1) (12)

Ω(p1, p2) = ρ(p1, p2; p1, p2) + ρ(p1p2; p2, p1) =

=

∫
dx1dx2e

i(p1x1+p2x2)

∫
dx ′1dx

′
2e
−i(p1x ′1+p2x ′2)ρ(x1, x2; x ′1, x

′
2) +

+

∫
dx1dx2e

i(p1x1+p2x2)

∫
dx ′1dx

′
2e
−i(p2x ′1+p1x ′2)ρ(x1, x2; x ′1, x

′
2)(13)

dx1dx
′
1 = dx+

1 dx−1 ; dx1dx
′
1 = dx+

2 dx−2

p1x1 + p2x2 − p1x
′
1 − p2x

′
2 = p1x

−
1 − p2x

−
2

p1x1 + p2x2 − p2x
′
1 − p1x

′
2 = P12x

−
1 + P12x

−
2 + Q(x+

1 − x+
2 ) (14)

P12 = (p1 + p2)/2; Q = p1 − p2



DERIVATION OF THE HBT FORMULA (III)

Ω(p1, p2) =

∫
dx+

1 dx+
2

∫
dx−1 dx−2 e i(p1x

−
1 −p2x

−
2 )ρ(x1, x2; x ′1, x

′
2) +

+

∫
dx+

1 dx+
2 e iQ(x+

1 −x
+
2 )

∫
dx−1 dx−2 e i(P12x

−
1 +P12x

−
2 )ρ(x1, x2; x ′1, x

′
2) =

=

∫
dx+

1 dx+
2 W (p1, p2; x+

1 , x
+
2 ) +

+

∫
dx+

1 dx+
2 e iQ(x+

1 −x
+
2 )W (P12,P12; x+

1 , x
+
2 ) (15)

If particles are uncorrelated, i.e.
W (p1, p2; x1, x2) = W (p1, x1)W (p2, x2)

one obtains

Ω(p1, p2) = Ω(p1)Ω(p2) + W̃ (P12,Q)W̃ ∗(P12,Q) (16)


