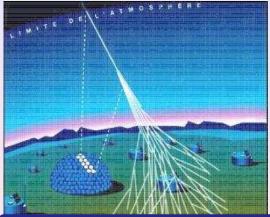
Cosmic Ray Interaction Models: Overview

Sergey Ostapchenko

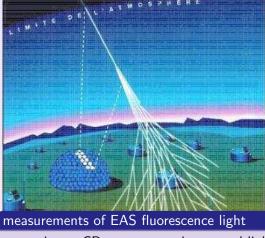
Frankfur Institute for Advanced Studies


田朝

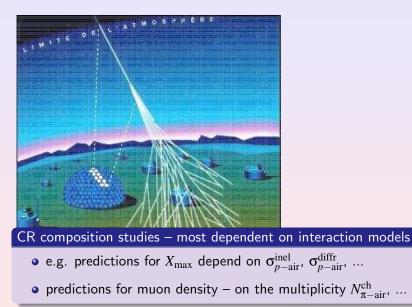
ISMD-2015

IL BAR

Wildbad Kreuth, October 4-9, 2015


Cosmic ray studies with extensive air shower techniques

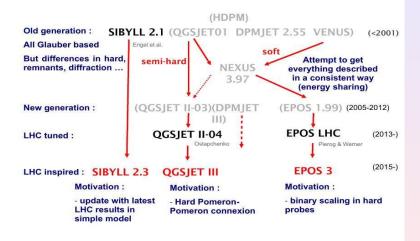
ground-based observations (= thick target experiments)


- primary CR energy \iff charged particle density at ground
- OR composition ↔ muon density at ground

Cosmic ray studies with extensive air shower techniques

- $\bullet \text{ primary CR energy} \Longleftrightarrow \text{integrated light}$
- CR composition \iff shower maximum position X_{max}

Cosmic ray studies with extensive air shower techniques

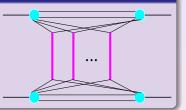

Requirements to models

- predictions for cross sections
- treatment of most general *p*-air & π -air (*K*-air) collisions
- of special importance: forward particle production

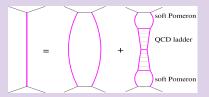
Most popular models

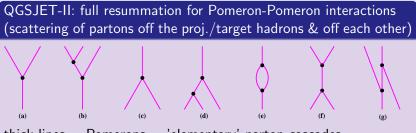
- EPOS [Werner, Liu & Pierog, PRC74 (2006) 044902]
- QGSJET-II [SO, PRD83 (2011) 014018]
- SIBYLL [Ahn, Engel, Gaisser, Lipari & Stanev, PRD80 (2009) 094003]

Overview of model development activities



(slide from Tanguy Pierog, ISVHECRI 2014)

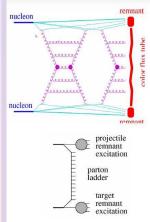

Pomerons = 'elementary' cascades


- e.g. elastic amplitude
- requires Pomeron amplitude & Pomeron-hadron vertices

Hard processes included using the 'semihard Pomeron' approach

- soft Pomerons to describe soft (parts of) cascades $(p_t^2 < Q_0^2)$
 - $\bullet\,\Rightarrow\, transverse$ expansion governed by the Pomeron slope
- DGLAP for hard cascades
- taken together: 'general Pomeron'

thick lines = Pomerons = 'elementary' parton cascades


• partial cross sections for various final states (including diffractive): from unitarity cuts of elastic diagrams

• \Rightarrow no additional free parameters (e.g. for diffraction)

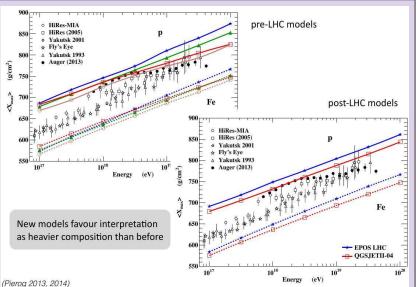
- s-channel unitarity satisfied: $\sum_{graphs,cuts} \bar{\chi}^{cut} = 2 \sum_{graphs} \chi^{uncut}$
- positive-definite cross sections for all final states \Rightarrow MC generation
- no additional free parameters for hA & AA collisions

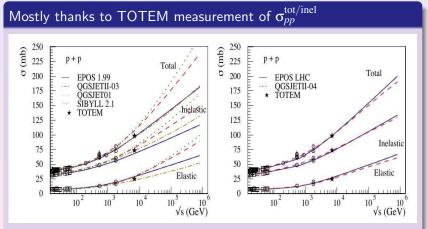
EPOS: impact on energy sharing & collective effects

The EPOS Model

EPOS is a parton model, with many binary parton-parton interactions, each one creating a parton ladder.

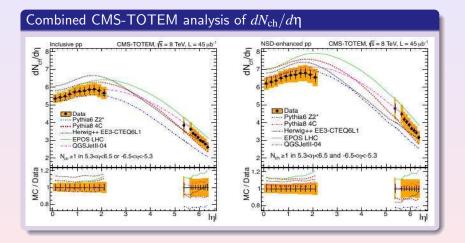
- Energy-sharing : for cross section calculation AND particle production
- Parton Multiple scattering
- Outshell remnants
- Screening and shadowing via unitarization and splitting
- Collective effects for dense systems

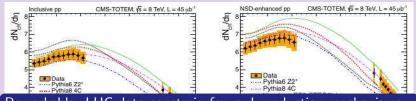

EPOS can be used for minimum bias hadronic interaction generation (h-p to A-B) from 100 GeV (lab) to 1000 TeV (cms) : used for air shower !


[from T. Pierog]

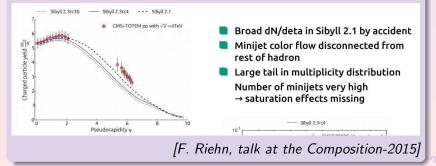
SIBYLL: based on the minijet approach

- pretty similar to many models used at colliders
- energy dependence driven by (mini-)jet production
- standard eikonalization of inclusive jet cross section
 - e.g. $n_{pp}^{\text{jet}}(s,b) = \sigma_{pp}^{\text{jet}}(s,p_t^{\text{cut}})A(b)$ average number of jet pairs for given b; A(b) parton overlap function
- multiple scattering: mostly impacts particle production at central rapidities

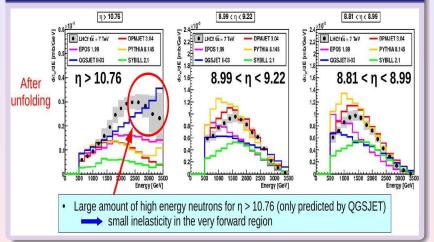

Start of LHC triggered model updates



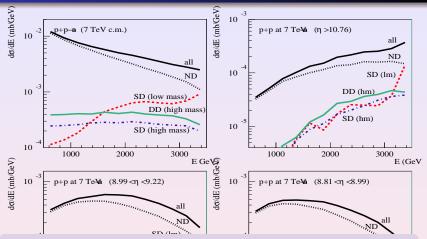
[from R. Engel]


• important: results of ATLAS ALFA - consistent with TOTEM

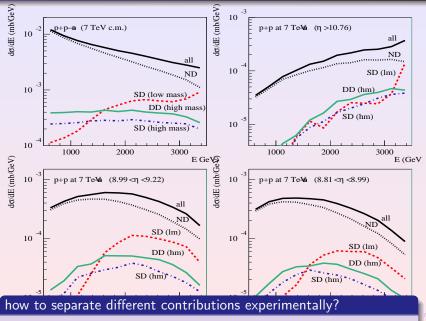
Combined CMS-TOTEM analysis of $dN_{\rm ch}/d\eta$



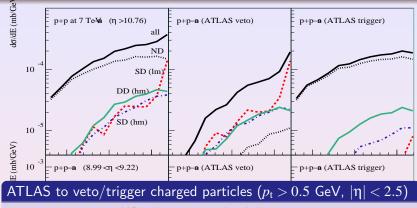
Remarkable: LHC data constrain forward production mechanisms


Forward production: neutrons

LHCf data at 7 TeV c.m. [talk of A. Tiberio at HSZD-2015]

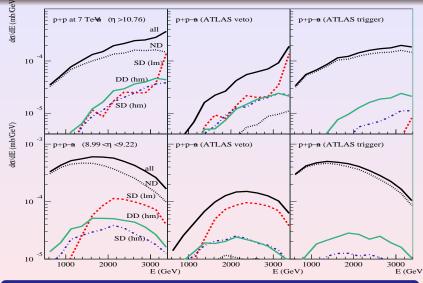

How to understand the results?

Forward neutron spectra in LHCF: different contributions

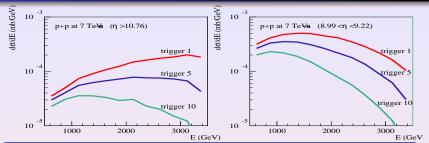


- low mass projectile diffr.: up to 50% contribution at $x_{
 m F}
 ightarrow 1$
- main contribution: nondiffractive collisions
 - for large x_F dominated by pion exchange mechanism
 (RRP-contribution) [Kopeliovich et al., PRD91 (2015) 054030]

Forward neutron spectra in LHCF: different contributions

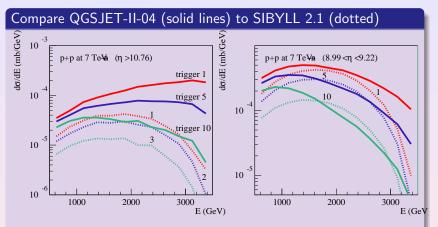

Forward neutron spectra: LHCF + ATLAS veto/trigger

- veto removes ND almost completely!
 - \Rightarrow allows a clean detection of low mass diffraction (impossible with other LHC detectors)
- triggering activity in ATLAS removes most of diffraction


• \Rightarrow neutron spectra measurement in ND events

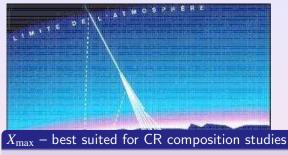
Forward neutron spectra: LHCF + ATLAS veto/trigger

Combination of the 3 measurements \Rightarrow separation of the different components!


'Centrality' dependence in pp: test of pp to p-air transition

Require at least 1, 5, 10 charged particles in ATLAS ($p_t > 0.5$ GeV)

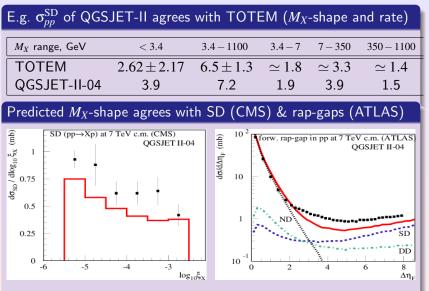
- enhanced multiple scattering
- \Rightarrow strong suppression of forward neutron production
 - pion exchange goes away
 - higher energy loss by the 'remnant' state
- important test for CR applications: measure of the 'inelasticity' in ND collisions
- NB: ND p air collision like more 'central' pp interaction


'Centrality' dependence in pp: test of pp to p-air transition

order of magnitude differences

- nearly same spectral shape in SIBYLL for all the triggers! (forward spectra decoupled from central production)
- \Rightarrow important discriminator between models

Model predictions for shower maximum: uncertainties


- predictions for X_{max} depend on $\sigma_{p-\text{air}}^{\text{inel}}$, $\sigma_{p-\text{air}}^{\text{diffr}}$, $K_{p-\text{air}}^{\text{inel}}$, ...
 - $\sigma_{pp}^{\text{tot/el}}$ can be reliably extrapolated thanks to LHC studies (notably by TOTEM, ATLAS ALFA)
 - $\sigma_{pp}^{\text{diffr}}$ impacts recalculation from pp to pA (AA)
 - σ_{p-air}^{inel} due to inelastic screening (correlated with σ_{pp}^{diffr})
 - $K_{p-\text{air}}^{\text{inel}}$ due to small 'inelasticity' of diffractive collisions

Impact of uncertainties of $\sigma_{pp}^{
m SD}$ on $X_{
m max}$ [SO, PRD89 (2014)]

 Presently: serious tension between CMS & TOTEM concerning diffraction rate in pp

	TOTEM	CMS
M_X range, GeV	7 - 350	12 - 394
$\sigma_{pp}^{\text{SD}}(\Delta M_X)$, mb	$\simeq 3.3$	4.3 ± 0.6
$\frac{d\sigma_{pp}^{\text{SD}}}{dy_{\text{gap}}}$, mb	0.42	0.62

Impact of uncertainties of $\sigma_{pp}^{ m SD}$ on $X_{ m max}$ [SO, PRD89 (2014)]

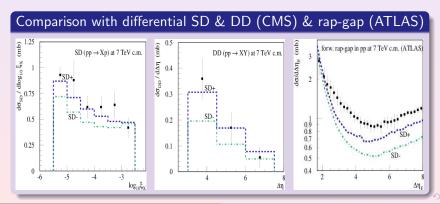
• but: rates of SD & rap-gaps - 30 - 40% below CMS & ATLAS

Impact of uncertainties of σ_{pp}^{SD} on X_{max} [SO, PRD89 (2014)]

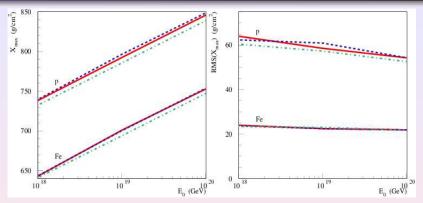
 Presently: serious tension between CMS & TOTEM concerning diffraction rate in pp

	TOTEM	CMS
M_X range, GeV	7 - 350	12 - 394
$\sigma_{pp}^{\mathrm{SD}}(\Delta M_X)$, mb	$\simeq 3.3$	4.3 ± 0.6
$\frac{d\sigma_{pp}^{\text{SD}}}{dy_{\text{gap}}}$, mb	0.42	0.62

- \Rightarrow may be regarded as a characteristic uncertainty for σ_{pp}^{SD}
 - impact on X_{\max} & RMS (X_{\max}) ?

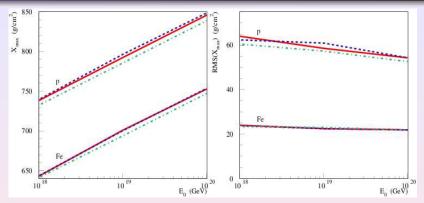

Two alternative model versions (tunes): SD+ & SD-

- SD+: increased high mass diffraction (HMD) (larger r₃ℙ)
 to approach CMS results
 - slightly smaller LMD to soften disagreement with TOTEM
- SD-: smaller LMD (by 30%), same HMD
- \bullet similar $\sigma_{\it pp}^{tot/el}$ & central particle production in both cases


Sing	le diffractio	on: SD- agree	s with TOT	EM, SD)+ o.k. י	with CMS
M _X	range, GeV	< 3.4	3.4 - 1100	3.4-7	7-350	350-1100
TC	DTEM	2.62 ± 2.17	6.5 ± 1.3	$\simeq 1.8$	$\simeq 3.3$	$\simeq 1.4$
opt	tion SD+	3.2	8.2	1.8	4.7	1.7
opt	tion SD-	2.6	7.2	1.6	3.9	1.7
	CMS $(M_X = 12 - 394 \text{ GeV})$			option SD+ opti		ו SD-
	4.3 ± 0.6			3.7		1
				0.1	5.	-

Two alternative model versions (tunes): SD+ & SD-

- SD+: increased high mass diffraction (HMD) (larger r₃ℙ)
 to approach CMS results
 - slightly smaller LMD to soften disagreement with TOTEM
- SD-: smaller LMD (by 30%), same HMD
- similar $\sigma_{pp}^{tot/el}$ & central particle production in both cases


Impact on X_{\max} & RMS (X_{\max})

Option SD-: smaller low mass diffraction

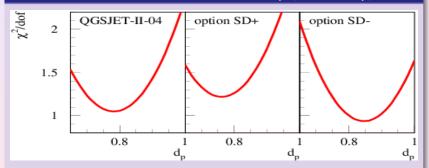
- \Rightarrow smaller inelastic screening \Rightarrow larger σ_{p-air}^{inel}
- smaller diffraction for proton-air \Rightarrow larger $K_{p-\mathrm{air}}^{\mathrm{inel}}, N_{p-\mathrm{air}}^{\mathrm{ch}}$
- \Rightarrow smaller X_{max} (all effects work in the same direction): $\Delta X_{\text{max}} \simeq -10 \text{ g/cm}^2$

Impact on X_{\max} & RMS (X_{\max})

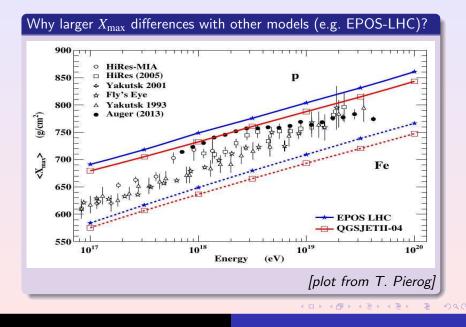
Option SD+: larger high mass diffraction

- opposite effects
- but: minor impact on X_{max} ($\Delta X_{\text{max}} < 5 \,\text{g/cm}^2$)
- in both cases: minor impact on $RMS(X_{max})$: $< 3 g/cm^2$

Potential impact on CR composition studies

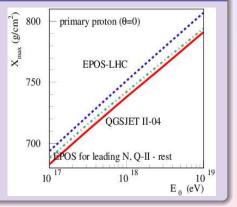

- Fit of Telescope Array data by $p+Fe \ CR$ composition:
 - good fit quality for all the 3 interaction models
 - but: for different CR compositions

Potential impact on CR composition studies


- Fit of Telescope Array data by $p+Fe \ CR$ composition:
 - good fit quality for all the 3 interaction models
 - but: for different CR compositions

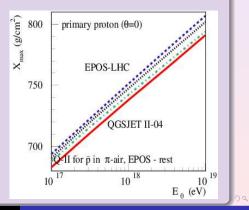
Fit quality for different proton abundances d_p $(d_{\text{Fe}} = 1 - d_p)$

- option SD+: pure proton composition excluded
- option SD-: almost pure proton composition is o.k. (scenario favored by some astrophysical models)

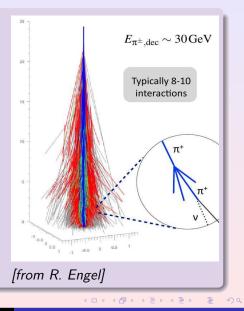

Other sources of model uncertainties for X_{max}

Other sources of model uncertainties for X_{max}

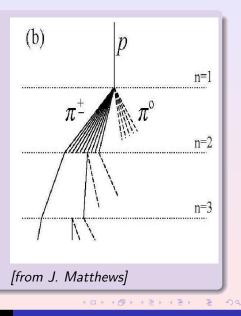
Let us compare X_{max} of EPOS-LHC & QGSJET-II-04


- and construct 'mixture models'
- use EPOS spectrum for leading nucleon in 1st interaction and QGSJET-II for the rest
- $\Delta X_{\text{max}} \simeq 5 \text{ g/cm}^2$ in agreement with above

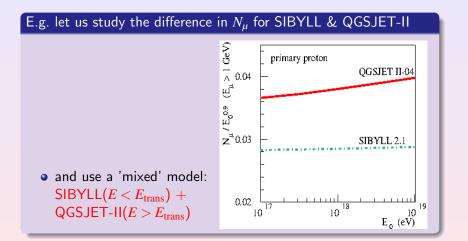
Other sources of model uncertainties for X_{max}


Let us compare X_{max} of EPOS-LHC & QGSJET-II-04

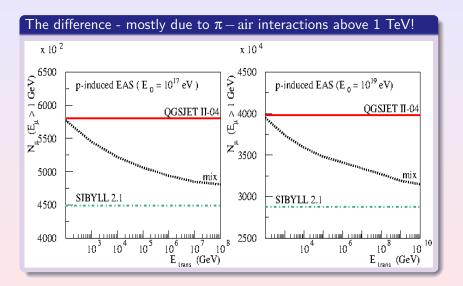
- EPOS for leading nucleon, QGSJET-II - rest
- $\Delta X_{\rm max} \simeq 5 {\rm g/cm^2}$ in agreement with above
- now from the other side: QGSJET-II spectra for p,\bar{p},n,\bar{n} production in $\pi - \operatorname{air}, K - \operatorname{air}$ and EPOS for all the rest
- $\Delta X_{\rm max} \simeq 4 {\rm g/cm^2}$
- remaining difference: partly due to harder pion spectra in *p* - air


EAS muon content N_{μ} : model predictions & uncertainties

- shower N_{μ} : results from multi-step hadron cascade
 - ~ 1 cascade step per energy decade
- which π air interactions most important?

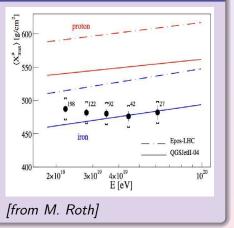


EAS muon content N_{μ} : model predictions & uncertainties


- multi-step hadron cascade
 - ~ 1 cascade step per energy decade
- which π air interactions most important?
- $N_{\mu} \propto E_0^{\alpha_{\mu}} = \prod_{i=1}^{\inf(\lg E_0)} 10^{\alpha_{\mu}}$
- each order of magnitude: factor $10^{\alpha_{\mu}} \simeq 8$ for N_{μ} $(\alpha_{\mu} \simeq 0.9)$

EAS muon content N_{μ} : model predictions & uncertainties

EAS muon content N_{μ} : model predictions & uncertainties


Present model differences both for N_{μ} & X_{max} : largely due to the treatment of π – air interactions

How to constrain?

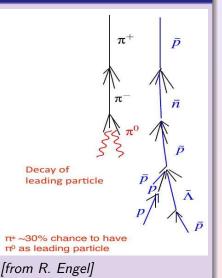
- new πp (πA) experiments at high energies (LHC in fixed target mode?)
- use fixed target $\pi p \& \pi A$ data to test the models (relevant physics already there)
- constrain physics meachanisms in models using pp & pA data from LHC
- model self-consistency checks with air shower data

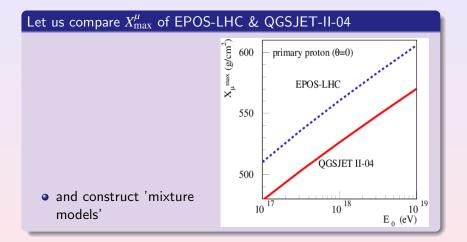
PAO measurement of the muon production depth X_{\max}^{μ}

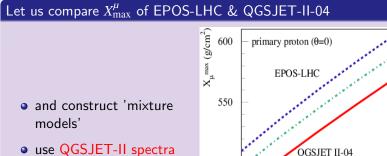
- challenging measurement
- interesting results
- what is the physics behind the model differences?

1) Hardness of pion spectra in π – air (b)p n=1n=2 o pion decay probability: $p_{\rm decay} \propto E_{\pi}^{\rm crit}/E_{\pi}/X$ • X_{max}^{μ} : where $p_{\text{decay}} > p_{\text{inter}}$ n=3 [from J. Matthews]

200


1) Hardness of pion spectra in π – air


- pion decay probability: $p_{\rm decay} \propto E_{\pi}^{\rm crit}/E_{\pi}/X$
- X_{\max}^{μ} : where $p_{\text{decay}} > p_{\text{inter}}$
- harder spectra in π air \Rightarrow deeper X_{\max}^{μ} (effectively one more cascade step)



2) Copious production of (anti-)nucleons

- no decay for $p \& \bar{p} (n \& \bar{n})$ \Rightarrow few more cascade steps
- but: impact on X^μ_{max} IFF
 N_{p,p̄,n,n̄} comparable to N_π!

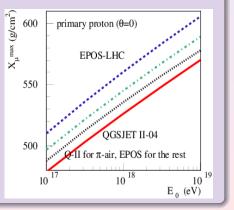
500

10

in π -air, EPOS for the rest

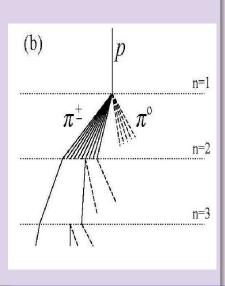
伺 ト イヨト イヨト

10 19

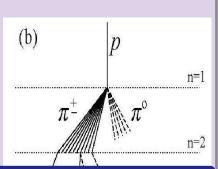

 E_0 (eV)

 10^{18}

for p, \bar{p}, n, \bar{n} production in $\pi - \operatorname{air}, K - \operatorname{air}$ and EPOS for all the rest


Let us compare X_{max}^{μ} of EPOS-LHC & QGSJET-II-04

- and construct 'mixture models'
- use QGSJET-II spectra for p, \bar{p}, n, \bar{n} production in π – air, K – air and EPOS for all the rest
- now QGSJET-II for all π air, K air interact. and EPOS for all the rest
- the two effects explain major part of the difference for X^{μ}_{\max}


How robust are predictions for EAS muon content?

- NB: N_µ results from a multi-step hadron cascade
 - ~ 1 cascade step per energy decade
- assume: muon predictions are o.k. up to energy *E*_A
- how difficult to get enhancement at energy E_B (E_B < 100E_A)?
 - i.e. within 2 orders of magnitude in energy
- secondary pions: mostly with x_F < 0.1
 - \Rightarrow just 1 cascade step between $E_A \& E_B$

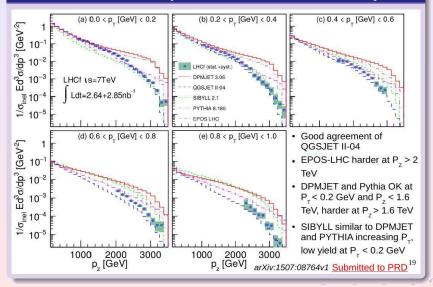
How robust are predictions for EAS muon content?

- NB: N_µ results from a multi-step hadron cascade
 - ~ 1 cascade step per energy decade
- assume: muon predictions are o.k. up to energy E_A
- how difficult to get enhancement at energy E_B (E_B < 100E_A)?

 \Rightarrow Muon excess has to be produced by primary CR interactions

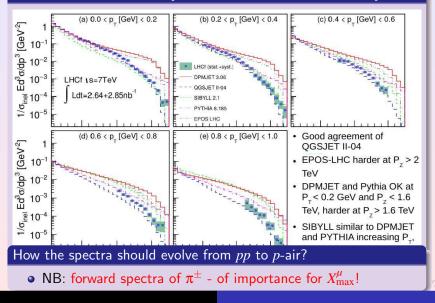
- if we double N^{ch} for the 1st interaction?
 - < 10% increase for N_{μ} !
- to get, say, a factor 2 enhancement: N_{ch} should rise by an order of magnitude

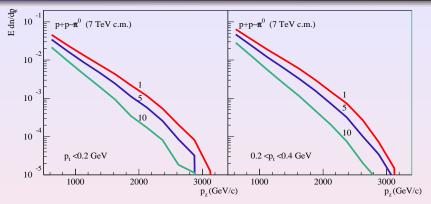
Prospects for seeing new physics in CR air showers?


- \bullet proton-air cross section at UH energies: $\sigma_{\mathit{p-air}}^{inel} \sim 1/2~\text{b}$
- to be detected by air shower techniques: new physics should impact the bulk of interactions
- ullet \Rightarrow to emerge with barn-level cross section

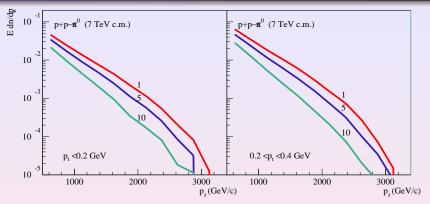
Extra slides

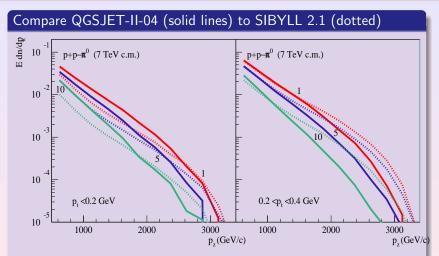
◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ▶


Forward production: π^0

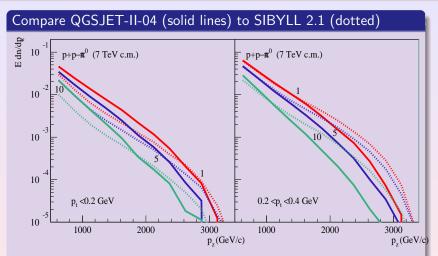

LHCf data at 7 TeV c.m. [talk of A. Tiberio at HSZD-2015]

Forward production: π^0


LHCf data at 7 TeV c.m. [talk of A. Tiberio at HSZD-2015]


• increasing 'centrality' of *pp* collisions by ATLAS triggers:

- ullet \Rightarrow enhanced multiple scattering
- \Rightarrow softer pion spectra
- clear violation of the limiting fragmentation
- NB: same mechanism for violation of the Feynman scaling (increase of multiple scattering with energy)



• increasing 'centrality' of *pp* collisions by ATLAS triggers:

- ullet \Rightarrow enhanced multiple scattering
- \Rightarrow softer pion spectra
- clear violation of the limiting fragmentation
- NB: same mechanism for violation of the Feynman scaling (increase of multiple scattering with energy)

- almost perfect limiting fragmentation in SIBYLL
- related: nearly perfect Feynman scaling in that model
- NB: TOTEM & CMS may test this with charged hadrons

- almost perfect limiting fragmentation in SIBYLL
- related: nearly perfect Feynman scaling in that model
- NB: TOTEM & CMS may test this with charged hadrons