Evidence for non-exponential pp d σ /dt at low t and $\sqrt{s} = 8$ TeV by TOTEM

T. Csörgő for the TOTEM Collaboration

Wigner Research Center for Physics, Budapest, Hungary KRF, Gyöngyös, Hungary

Introduction Experimental setup Event selection LHC Optics Data analysis Results and cross-checks Outlook Summary

TOTEM physics at LHC

Elastic and diffractive scattering: colorless exchange

Earlier results on elastic scattering

Earlier hints on non-exponential behaviour:

at ISR: 21.5 to 52.8 GeV, change of slope and better fits with exp(-B |t|- C t²)

at SppS: Change of slope only, at |t|~ 0.14 GeV²

At Tevatron, non-exponential not seen

earlier LHC data ~ exponential, satisfactory fits with exp(-B |t|). New TOTEM data at low |t|: evidence for non-exponential

TOTEM – Experimental Setup at IP5

T1, T2: CSC and GEM Inelastic telescopes; RP: Roman Pots [Details: JINST 3 (2008) S08007]. In this talk: TOTEM Roman Pots 220 m

RP stations for elastic scattering

Near(214 m) and Far(220 m) TOTEM RP units on both sides of IP5

Three RP-s in each unit: (top, horizontal, bottom) Each RP: Stack of 10 silicon strips (pitch 66 μm) "edgeless" (active in few x 10 μm) Trigger capable electronics

Elastic scattering: two anti-parallel protons
→ two topologies, analyzed independently:
→ 45 bottom-56 top, 45 top-56 bottom

TOTEM data taking

July 2012 data, **special** LHC run, $\beta^* = 90$ m, $\sqrt{s} = 8$ TeV

2 → 3 colliding bunch pair, 8 x 10^{10} p/bunch Instantaneous $L \sim 10^{28}$ cm⁻²s⁻¹ 11 h data taking, RP-s at 9.5 σ_{beam} Integrated $L \sim 735 \ \mu \text{b}^{-1}$ 7.2 10^6 elastic events

LHC Optics for Elastic pp Scattering

LHC Optics Determination, $\beta^* = 90$ m

Figure 12. (color online) The MC error distribution of $\beta^* = 90$ m optical functions L_y and dL_x/ds for Beam 1 at E = 4 TeV, before and after optics estimation.

Precise control of LHC imperfections with perturbed LHC optics and recalibration from data at IP5: factors of 2 - 10 <u>arXiv:1406.0546</u>

LHC optics and proton acceptance

t = $-p^2 \theta_*^2$: four-momentum transfer squared;

 $\beta^* = 90 \text{ m MC simulation shown}$ Parallel to point focussing, $v_y \approx 0$ Large effective lenght L_y Elastic scattering events: in vertical RPs

$\xi = \Delta p/p$: fractional momentum loss

 $\beta^* = 90 \text{ m}$ Diffraction: all ξ if $|t| \ge 10^{-2} \text{ GeV}^2$, soft & semi-hard diffr. Elastic: low to mid |t|Total cross-section

RP unit	L_x	v _x	Ly	vy
near	2.45 m	-2.17	239 m	0.040
far	-0.37 m	-1.87	264 m	0.021

Kinematic cuts: selection of elastics

 10^{4}

10³

 10^{2}

101

 10^{4}

 10^{3}

 10^{2}

101

100

Precise control of LHC optics and elastic scattering: **Kinematics** reconstruction Alignment **Optics recalibration Resolution unfolding** Acceptance correction **Background substraction Detection & efficiency** Angular resolution **Normalization Binning**

Table 2: The elastic selection cuts. The superscripts R and L refer to the right and left arm, N and F correspond to the near and far units, respectively. The constant $\alpha = L_y^F/L_y^N - 1 \approx 0.11$. The right-most column gives a typical RMS of the cut distribution.

discriminator	cut quantity	$RMS (\equiv 1\sigma)$
1	$\theta_x^{*R} - \theta_x^{*L}$	9.5 µrad
2	$\theta_v^{*R} - \theta_v^{*L}$	$3.3 \mu rad$
3	$\alpha y^{\mathbf{R},\mathbf{N}} - (y^{\mathbf{R},\mathbf{F}'} - y^{\mathbf{R},\mathbf{N}})$	18 µm
4	$\alpha y^{L,N} - (y^{L,F} - y^{L,N})$	18 µm
5	$x^{*R} - x^{*L}$	8.5 μm

ISMD@Wildbad Kreuth, 2015/10/5-9

500 x*^R [µm]

0

-800

-500

Differential cross-section @ 8 TeV

t = $-p^2 \theta_*^2$; "optimized binning"; almost exponential but if one looks in detail, NOT

Differential cross-section @ 8 TeV

 $N_{b} = 1$ fits excluded. Relative to best exponential, a significant 7.2 σ deviation found.

Differential cross-section @ 8 TeV

Table 4: Details of the fits in Figure 11 using parametrisation Eq. (15). The matrices give the correlation factors between the fit parameters.

N _b	$d\sigma/dt _{t=0}$	b_1	b_2	b_3	χ^2/ndf	p-value	significance
	[mb/GeV ²]	$[GeV^{-2}]$	$[GeV^{-4}]$	[GeV ⁻⁶]			
1	531 ± 22	-19.35 ± 0.06	-	-	117.5/28 = 4.20	$6.2 \cdot 10^{-13}$	7.20σ
	(+1.00)	-0.11					
	-0.11	+1.00					
2	537 ± 22	-19.89 ± 0.08	2.61 ± 0.30	-	29.3/27 = 1.09	0.35	0.94σ
	(+1.00)	+0.19	-0.34)				
	+0.19	+1.00	-0.76				
	(-0.34	-0.76	+1.00)				
3	541 ± 22	-20.14 ± 0.15	5.95 ± 1.75	-12.0 ± 6.2	25.5/26 = 0.98	0.49	0.69σ
	(+1.00)	+0.08	-0.04	-0.02			
	+0.08	+1.00	-0.90	+0.85			
	-0.04	-0.90	+1.00	-0.99			
	(-0.02)	+0.85	-0.99	+1.00)			

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t}(t) = \left.\frac{\mathrm{d}\sigma}{\mathrm{d}t}\right|_{t=0} \left.\exp\left(\sum_{i=1}^{N_b} b_i t^i\right), \quad \frac{\chi^2 = \Delta^{\mathrm{T}} \mathrm{V}^{-1} \Delta}{\mathrm{V} = \mathrm{V}_{\mathrm{stat}} + \mathrm{V}_{\mathrm{syst}}} \right| \Delta_i = \left.\frac{\mathrm{d}\sigma}{\mathrm{d}t}\right|_{\mathrm{bin}\,i} - \frac{1}{\Delta t_i} \int_{\mathrm{bin}\,i} f(t) \,\mathrm{d}t,$$

 $N_{b} = 1$ fits excluded. Relative to best exponential, a significant 7.2 σ deviation found.

Cross-check: "per-mille" binnings

Figure 12: Differential cross-section using the "per-mille" binning and plotted as relative difference from the reference exponential (see vertical axis). The black dots represent data points with statistical uncertainty bars. The red line shows pure exponential fits in regions below and above $|t| = 0.07 \text{ GeV}^2$, see Eq. (19). The yellow band corresponds to the full systematic uncertainty, the brown-hatched one includes all systematic contributions except the normalisation. Both bands are centred around the fit curve.

 $\frac{\mathrm{d}\sigma}{\mathrm{d}t}(t) = \begin{cases} a_1 \,\mathrm{e}^{b_1|t|} & |t| < 0.07 \,\mathrm{GeV^2} \\ a_2 \,\mathrm{e}^{b_2|t|} & |t| > 0.07 \,\mathrm{GeV^2} \end{cases} \qquad \chi_p^2 = \Delta_p^{\mathrm{T}} \mathsf{V}_p^{-1} \Delta_p \ , \quad \Delta_p = \begin{pmatrix} a_1 - a_2 \\ b_1 - b_2 \end{pmatrix}$

Simple exp fits excluded. Different binnings show the same effect. Here 7.8 σ significance.

Systematics

Figure 9: Impact of *t*-dependent systematic effects on the differential cross-section. Each curve corresponds to a systematic error at 1σ , cf. Eq. (13). The two contributions due to optics correspond to the two vectors in Eq. (8). The envelope is determined by summing all shown contributions in quadrature for each |t| value. The right-hand plot provides a vertical zoom; note that the envelope is out of scale.

No significant effect found on the total pp cross-section, σ_{tot}

"Blessed" TOTEM physics result

Special TOTEM run probing into the Coulomb-nuclear interference region

TOTEM status after LS1

26 Roman Pots: the largest Roman Pot system ever operated at a collider

All RP insertions successfull so far. Standalone operations as well as common runs with CMS. For more details see M. Deile's talk at LHCC, Sept 2015.

Summary

Nucl. Phys. B899 (2015) 297 by TOTEM: low-|t| d σ /dt for elastic pp at $\sqrt{s} = 8$ TeV with unprecedented precision

Significantly non-exponential behaviour more than 7 σ effect protons are non-Gaussian in b

No significant effect on earlier σ_{tot} measurements at 8 TeV

New results on Coulomb-nuclear at even lower t approved.

First data taking at 13 TeV

The TOTEM Collaboration

The TOTEM Collaboration

G. Antchev¹, P. Aspell^q, I. Atanassov¹, V. Avati^q, J. Baechler^q, V. Berardi^{j,i}, M. Berretti^{q,o},
E. Bossini^o, U. Bottigli^o, M. Bozzo¹, P. Broulím^a, A. Buzzo¹, F. S. Cafagnaⁱ, C. E. Campanella^{k,i},
M. G. Catanesiⁱ, M. Csanád^{g,2}, T. Csörgő^{g,h}, M. Deile^q, F. De Leonardis^{k,i}, A. D'Orazio^{k,i},
M. Doubek^c, K. Eggert^r, V. Eremin⁵, F. Ferro¹, A. Fiergolski^{i,4}, F. Garcia^e, V. Georgiev^a,
S. Giani^q, L. Grzanka^{p,3}, C. Guaragnella^{k,i}, J. Hammerbauer^a, J. Heino^e, A. Karev^q, J. Kašpar^{b,q},
J. Kopal^b, V. Kundrát^b, S. Lamiⁿ, G. Latino^o, R. Lauhakangas^e, R. Linhart^a, E. Lippmaa^d,
J. Lippmaa^d, M. V. Lokajíček^b, L. Losurdo^o, M. Lo Vetere^{m,1}, F. Lucas Rodríguez^q, M. Macrí¹,
A. Mercadanteⁱ, N. Minafra^{q,j}, S. Minutoli¹, T. Naaranoja^{e,f}, F. Nemes^{g,2}, H. Niewiadomski^r,
E. Oliveri^q, F. Oljemark^{e,f}, R. Orava^{e,f}, M. Oriunno⁶, K. Österberg^{e,f}, P. Palazzi^q, L. Paločko^a,
V. Passaro^{k,i}, Z. Peroutka^a, V. Petruzzelli^{k,i}, T. Politi^{k,i}, J. Procházka^b, F. Prudenzano^{k,i},
M. Quinto^{i,j}, E. Radermacher^q, E. Radicioniⁱ, F. Ravotti^q, E. Robutti¹, L. Ropelewski^q,
G. Ruggiero^q, H. Saarikko^{e,f}, A. Scribanoⁿ, J. Smajek^q, W. Snoeys^q, T. Sodzawiczny^q, J. Sziklai^g,

^aUniversity of West Bohemia, Pilsen, Czech Republic. ^bInstitute of Physics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic. ^cCzech Technical University, Praha, Czech Republic. ^dNational Institute of Chemical Physics and Biophysics NICPB, Tallinn, Estonia. ^eHelsinki Institute of Physics, Helsinki, Finland. ^fDepartment of Physics, University of Helsinki, Helsinki, Finland. ⁸Wigner Research Centre for Physics, RMKI, Budapest, Hungary. ^hKRF University College, Gyöngyös, Hungary. ⁱINFN Sezione di Bari, Bari, Italy, ^jDipartimento Interateneo di Fisica di Bari, Bari, Italy. ^kDipartimento di Ingegneria Elettrica e dell'Informazione - Politecnico di Bari, Bari, Italy. ¹INFN Sezione di Genova, Genova, Italy, ^mUniversità degli Studi di Genova, Italy, ⁿINFN Sezione di Pisa, Pisa, Italy. ^o Università degli Studi di Siena and Gruppo Collegato INFN di Siena, Siena, Italy. PAGH University of Science and Technology, Krakow, Poland. ^qCERN, Geneva, Switzerland, Case Western Reserve University, Dept. of Physics, Cleveland, OH, USA.

8 countries 18 institutions 85 people

Thank you!

Backup slides – Questions?

ISMD@Wildbad Kreuth, 2015/10/5-9

Csörgő, T.

Backup slide – covariance matrix

Table 3: The elastic differential cross-section as determined in this analysis using the "optimised" binning. The three left-most columns describe the bins in t. The representative point gives the t value suitable for fitting [23]. The other columns are related to the differential cross-section. The four right-most columns give the leading systematic biases in $d\sigma/dt$ for 1σ -shifts in the respective quantities, δs_q , see Eqs. (13) and (14). The two contributions due to optics correspond to the two vectors in Eq. (8).

	t bin [Ge	V ²]			do	/dt [mb/GeV2	²]		
left	right	represent.	value	statistical	systematic	normalisation	optics	optics	beam
edge	edge	point		uncertainty	uncertainty	N	mode 1	mode 2	momentum
0.02697	0.03005	0.02850	305.09	0.527	12.85	+12.83	-0.479	-0.263	+0.257
0.03005	0.03325	0.03164	287.95	0.478	12.08	+12.06	-0.502	-0.217	+0.206
0.03325	0.03658	0.03491	269.24	0.436	11.32	+11.31	-0.491	-0.174	+0.159
0.03658	0.04005	0.03831	251.31	0.401	10.59	+10.57	-0.478	-0.135	+0.115
0.04005	0.04365	0.04184	235.15	0.371	9.874	+ 9.861	-0.465	-0.0981	+0.0750
0.04365	0.04740	0.04551	218.32	0.343	9.185	+ 9.172	-0.451	-0.0647	+0.0383
0.04740	0.05129	0.04933	202.64	0.318	8.521	+ 8.509	-0.437	-0.0343	+0.0052
0.05129	0.05534	0.05330	187.10	0.295	7.882	+ 7.870	-0.421	-0.0070	-0.0244
0.05534	0.05956	0.05743	173.06	0.274	7.270	+ 7.257	-0.405	+0.0172	-0.0504
0.05956	0.06394	0.06173	158.77	0.255	6.685	+ 6.672	-0.388	+0.0385	-0.0731
0.06394	0.06850	0.06620	144.93	0.236	6.127	+ 6.114	-0.370	+0.0569	-0.0925
0.06850	0.07324	0.07085	133.12	0.219	5.597	+ 5.584	-0.352	+0.0724	-0.109
0.07324	0.07817	0.07568	121.24	0.203	5.096	+ 5.082	-0.334	+0.0853	-0.122
0.07817	0.08329	0.08071	109.77	0.188	4.623	+ 4.609	-0.316	+0.0957	-0.132
0.08329	0.08862	0.08593	99.077	0.174	4.179	+ 4.164	-0.297	+0.104	-0.140
0.08862	0.09417	0.09137	89.126	0.161	3.762	+ 3.747	-0.279	+0.109	-0.145
0.09417	0.09994	0.09702	79.951	0.148	3.374	+ 3.359	-0.260	+0.113	-0.147
0.09994	0.10593	0.10290	71.614	0.137	3.014	+ 2.998	-0.242	+0.115	-0.148
0.10593	0.11217	0.10902	63.340	0.125	2.680	+ 2.664	-0.224	+0.115	-0.147
0.11217	0.11866	0.11538	56.218	0.115	2.373	+ 2.357	-0.206	+0.114	-0.144
0.11866	0.12540	0.12199	49.404	0.105	2.092	+ 2.075	-0.189	+0.111	-0.139
0.12540	0.13242	0.12887	43.300	0.0961	1.835	+ 1.818	-0.173	+0.107	-0.134
0.13242	0.13972	0.13602	37.790	0.0876	1.601	+ 1.585	-0.157	+0.102	-0.127
0.13972	0.14730	0.14346	32.650	0.0795	1.391	+ 1.374	-0.142	+0.0974	-0.120
0.14730	0.15520	0.15120	28.113	0.0720	1.201	+ 1.185	-0.127	+0.0924	-0.112
0.15520	0.16340	0.15925	24.155	0.0659	1.030	+ 1.016	-0.0955	+0.0866	-0.104
0.16340	0.17194	0.16761	20.645	0.0616	0.877	+ 0.866	-0.0590	+0.0804	-0.0951
0.17194	0.18082	0.17632	17.486	0.0574	0.743	+ 0.733	-0.0302	+0.0739	-0.0865
0.18082	0.19005	0.18537	14.679	0.0543	0.626	+ 0.617	-0.0081	+0.0673	-0.0780
0.19005	0.19965	0.19478	12.291	0.0504	0.524	+ 0.515	+0.0052	+0.0606	-0.0697

Backup slide – TOTEM upgrade plans

Timing Detector Development for Medium Pileup (β* = 90 m Runs)

Objective:

- 3 timing detector planes in 4 vertical RPs (1 pot pair per arm)
- Detector installation in Technical Stop 3 YETS
- ~ 60 ps resolution per arm (~ 100 ps per detector) enough since at 90m the pileup μ < 0.6 (different for CT-PPS: β*=0.8m: μ ≤ 50 !
 → needs time resolution ~ 10 ps)

Development of Diamond Detectors:

Segmentation follows the diffractive hit distribution: almost constant occupancy per pixel

Csöraő, T.

Backup slide – theory interpretations

Fig. 5. The ReBB model, fitted in the $0.0 \le |t| \le 0.36 \text{ GeV}^2$ range, with respect to the exponential fit of Eq. (33). In the plot only the $0.0 \le |t| \le 0.2 \text{ GeV}^2$ range is shown. The curve indicates a significant deviation from the simple exponential at low |t| values.

TOTEM for double diffraction

Event selection: Trigger with T2, at least one track in <u>both</u> T2 hemispheres, <u>no tracks in T1</u> "(0T1+2T2) topology".

- ND background estimated scaling the MC prediction using a control sample from data dominated by ND (2T1+2T2 events)
- SD background estimated completely from data using a SD-dominated control sample (0T1+1T2) with protons in the RP

TOTEM results on double diffraction

Phys. Rev. Lett. 111, 262001

FIG. 1 (color online). Validation of background estimates for the full selection I_{track} . Each plot shows the corrected number of events in data (black squares) and the combined estimate with background uncertainties. The combined estimate is the sum of all components, from bottom to top: the ND estimate (cyan), CD estimate (green), SD estimate (blue), and DD estimate (red).

$$\sigma_{\rm DD} = \frac{E(N_{\rm data}^{2T2+0T1} - N_{\rm bckg}^{2T2+0T1})}{\underline{f}},$$

E: experimental correction includes acceptance, tracking, reconstruction efficiencies (T2) and for only neutrals in T2

 $E = 0.9 \pm 0.1$

$$L = 40.1 \pm 1.6 \ \mu b^{-1}$$

TOTEM result: $\sigma_{DD} = 116 \pm 25 \ \mu b$ $4.7 < |\eta|_{min} < 6.5$ for both diffractive systems

TOTEM for double diffraction

TABLE III. Double diffractive cross-section measurements (μ b) in the forward region. Both visible and η_{min} corrected cross sections are given. The latter is compared to PYTHIA and PHOJET predictions. PYTHIA estimate for total $\sigma_{DD} = 8.1$ mb and PHOJET estimate $\sigma_{DD} = 3.9$ mb.

Visible	I_{track} 131 ± 22	$D11_{ m track}$ 58 ± 14	$\begin{array}{c} D22_{\rm track} \\ 20 \pm 8 \end{array}$	$\begin{array}{c} D12_{\rm track} \\ 31 \pm 5 \end{array}$	$\begin{array}{c} D21_{\rm track} \\ 34\pm5 \end{array}$
~	$I_{116 + 25}$	D11	D22	D12	D21
η_{\min} PYTHIA η_{\min}	110 ± 25 159	63 ± 20 70	12 ± 3 17	20 ± 3 36	$\frac{27 \pm 3}{36}$
PHOJET η_{\min}	101	44	12	23	23

TABLE IV.	Summary	of	statistical	and	systematic	uncertain-
ties (μ b).						

	Ι	D11	D22	D12	D21
Statistical	1.5	1.1	0.7	0.9	0.9
Background estimate	9.0	6.0	3.5	2.7	2.2
Trigger efficiency	2.1	1.2	1.0	0.9	0.9
Pileup correction	2.4	2.1	0.4	1.1	1.0
T1 multiplicity	7.0	3.9	0.7	1.6	1.7
Luminosity	4.7	2.6	0.5	1.1	1.1
Experimental correction	14.7	14.1	2.6	2.0	2.0
$\eta_{ m min}$	15.4	11.0	1.5	2.9	2.9
Total uncertainty	24.8	19.6	4.8	5.1	4.9

Event cathegories: I: $|\eta|_{min}$ corrected D11: 4.7 < $|\eta^{\pm}|_{min}$ < 5.9 D22: 5.9 < $|\eta^{\pm}|_{min}$ < 6.5

 $\begin{array}{l} \text{SD \& DD results combined} \\ \text{seems to indicate} \\ \text{factorisation breaking:} \\ \sigma_{\text{DD}} \; (4.7 \leq |\eta_{\text{min}}| \leq 6.5) >> \\ \sigma_{\text{SD}} \; (-4.7 \geq \eta_{\text{min}} \geq -6.5) \times \\ \sigma_{\text{SD}} \; (4.7 \leq \eta_{\text{min}} \leq 6.5) \; / \; \sigma_{\text{elastic}} \end{array}$

Note: |η |_{min} correction: the dominant source of the uncertaintly

TOTEM for single diffraction

Event classification based on tracks in T1 & T2, proton in RP

SD class	Configuration	M_X [GeV]	$\xi = \Delta p/p$
Low mass	1 RP + opp. T2	3.4 - 8	2x 10 ⁻⁷ – 10 ⁻⁶
Medium mass	1 RP + opp. T2 + opp. T1	8 - 350	10 ⁻⁶ – 0.0025
High mass	1 RP + opp. T2 + same T1	350 - 1100	0.0025 - 0.025
Very high mass	1 RP + both T2	1100 –	0.025 –

TOTEM on single diffraction, 7 TeV

Corrections included:

- Trigger efficiency
- Proton acceptance & reconstruction efficiency
- Background subtraction
- Extrapolation to t = 0

Missing corrections:

- Class migration
- ξ resolution & beam divergence effects

Estimated uncertainties: B ~ 15%; σ ~ 20%

TOTEM preliminary: σ_{SD} = 6.5 ± 1.3 mb 3.4 GeV < M_{diff} < 1.1 TeV

Event selection, data sets

Selected based on topology, low $|\xi|$, collinearity, & vertex . Key issues: RP alignment and optics.

Data sets at different conditions to measure elastics over wide t-range including very low |t|

3 methods to measure σ_{tot}

TOTEM total cross-section results

First measurements of the total proton-proton cross section at the LHC energy of $\sqrt{s} = 7 \text{TeV}$ [EPL 96 (2011) 21002]

Measurement of proton-proton elastic scattering and total cross-section at $\sqrt{s} = 7 \text{ TeV}$ [EPL 101 (2013) 21002]

Measurement of proton-proton inelastic scattering cross-section at $\sqrt{s} = 7 \text{ TeV}$ [EPL 101 (2013) 21003]

Luminosity-independent measurements of total, elastic and inelastic cross-sections at $\sqrt{s} = 7$ TeV [EPL 101 (2013) 21004]

A luminosity-independent measurement of the proton-proton total cross-section at $\sqrt{s} = 8 \text{ TeV}$ [Phys. Rev. Lett. 111, 012001 (2013)]

TOTEM total cross-section @ 8TeV with luminosity-independent method

TABLE I. Description of the available data samples. The RP position is given as the RP approach to the beam in multiples of the transverse beam size ($\sigma_{\text{beam}} \sim 0.7 \text{ mm}$). The third column shows the lowest |t| values reached in the elastic sample after all cuts. The last two columns show the number of elastic and inelastic events collected.

Data set	RP position	$ t _{\min}$ (GeV ²)	Elastic events	Inelastic events
1	$6.0\sigma_{ m beam}$	0.01	$\begin{array}{c} 416 \times 10^3 \\ 238 \times 10^3 \end{array}$	2.30×10^{6}
2	$9.5\sigma_{ m beam}$	0.02		1.72×10^{6}

Needs precise control of LHC imperfections and recalibration from data at IP5: $\beta^*=90m$, optics error reduction by 2-10, arXiv:1406.0546

TABLE II. Overview of the analysis steps, associated corrections, and systematic uncertainties to the differential and total elastic rate.

Source	Effect on	$ t = 0.01 \text{ GeV}^2$	0.1 GeV^2	0.2 GeV^2
Alignment	t	$\pm 0.21\%$	$\pm 0.3\%$	$\pm 0.57\%$
Kinematics reconstruction: Optics, beam energy	t	$\pm 1.09\%$	$\pm 0.72\%$	$\pm 4.3\%$
Selection	norm.		$\pm 0.5\%$	
Acceptance (correction factor)	dN/dt	3.3 ± 0.024	1.2 ± 0.002	1.8 ± 0.004
Resolution unfolding	t	$(0.5 \pm 0.1)\%$	$(-0.2 \pm 0.003)\%$	$(-2.6 \pm 0.1)\%$
Efficiency	norm.	Uncorrelated inefficiency: $(10 \pm 0.6)\%$ Correlated inefficiency: $(3 \pm 1)\%$ Pileup: $(4.7 \pm 0.4)\%$		
Extrapolation/Fit		$\frac{dN_{\rm el}/dt _{t=0}}{B}$	± 2.5 (19.9 ± 0.3	5% 3) GeV ⁻²

TOTEM: total cross-sections

7 TeV: Excellent agreements between different methods. Ongoing analysis for 8 and 2.6 TeV with different optics/methods.