XLV International Symposium on Multiparticle Dynamics (ISMD2015) October 4-9, 2015 (Wildbad Kreuth, Germany)

Photon and photon+jet production with the ATLAS detector

Claudia Glasman Universidad Autónoma de Madrid

Outline:

- Physics with photons
- Photons with the ATLAS detector
- Inclusive photon production
- Photon + jet production
- Photon pair production
- Summary

Prompt photons in pp collisions at LHC

- Measurements of the production of high p_T prompt photons (in association with jets) and pairs of photons in hadron colliders provide
 - \rightarrow tests of pQCD predictions in a cleaner reaction than jet production
 - ightarrow constraints on the proton PDFs (especially gluon PDF: $qg
 ightarrow q\gamma$ dominant)
 - → input to understand QCD background to Higgs production and BSM searches (tuning of Monte Carlo models)
- Prompt photons in pp collisions are produced via two mechanisms: \rightarrow direct-photon (DP) and fragmentation (F) processes

Prompt photons in pp collisions: isolation

• In addition to prompt photons, photons are produced copiously inside jets (eg, π^0 decays)

 \Rightarrow it is essential to require isolation to study prompt photons in hadron colliders

• This is achieved by requiring, eg $E_{\mathrm{T}}^{\mathrm{iso}} \equiv \sum_{i} E_{T}^{i} < E_{T}^{\mathrm{max}}$ with the sum over the particles (except the photon!) inside a cone of radius R centered on the photon in the $\eta - \phi$ plane

• The isolation requirement suppresses mostly the contribution of photons inside jets (from π^0 's and other neutral mesons decays) and the fragmentation contribution

Photons with the ATLAS detector

The ATLAS detector

- Inner detector (ID): tracking and PI in $|\eta| < 2.5$ (silicon pixels and strips, TRT)
- Calorimeters:

electromagnetic (LAr) \rightarrow barrel: $|\eta| < 1.475$, endcap: $1.375 < |\eta| < 3.2$ (and forward: $3.1 < |\eta| < 4.9$); three longitudinal layers hadronic (scintillator/steel, LAr/Cu, LAr/W) \rightarrow barrel: $|\eta| < 0.7$, extended barrel: $0.8 < |\eta| < 1.7$, endcap: $1.5 < |\eta| < 3.2$ and forward: $3.1 < |\eta| < 4.9$

are the main components for photon reconstruction and identification in ATLAS

Photon reconstruction and identification in ATLAS LAr Calorimeter

- Reconstruction:
 - First layer: high granularity in η direction
 - Second layer: collects most of the energy
 - Third layer: used to correct for leakage
- Cluster of EM cells without matching track: "unconverted" photon candidate
- Cluster of EM cells matched to pairs of tracks: "converted" photon candidate

- Identification:
 - To discriminate signal vs background: shape variables from the lateral and

longitudinal energy profiles of the shower in the calorimeters; "loose" (including leakage in hadronic calorimeter and width of shower) and "tight" (to discriminate single-photon showers from overlapping nearby showers) identification criteria are defined

• Efficiency: 97~(85)% for loose (tight) photons with $E_{T}^{\gamma} > 20~{
m GeV}$

October 4-9, 2015

Photon isolation and background subtraction in ATLAS

- E_{T}^{iso} is computed using calorimeter cells (EM and HAD) in a cone of R = 0.4, E_T is a contribution from the procession of the photon energy is subtracted (few %) of the photon energy is subtracted to E_T is a contribute to E_T is a contribute to E_T.
- - \rightarrow correction computed using the jet-area method (M. Cacciari et al, JHEP 0804 (2008) 005)
- After these corrections, the $(E_{\rm T}^{\rm iso})^{\rm cor}$ distribution is centered at zero
- A photon candidate is considered isolated if $(E_{\mathrm{T}}^{\mathrm{iso}})^{\mathrm{cor}} < (E_{\mathrm{T}}^{\mathrm{iso}})^{\mathrm{cut}}$

 $F_{\tau}^{\gamma} > 100 \text{ GeV } \text{ m}^{\gamma} | < 1.37$

D

В

20

30

E^{iso} [GeV]

35

200 ×10°

180

- However, residual background still expected even after tight identification and isolation requirements
- A data-driven method used to avoid relying on detailed simulations of the background processes:
 - \rightarrow two-dimensional sideband method based on
 - γ_{ID} vs $E_{\mathrm{T}}^{\mathrm{iso}}$ plane and corrected for signal leakage
- ullet Purity: $\gtrsim 90\%$ for $E_{
 m T}^{\gamma} > 40~{
 m GeV}$ (ATLAS Collab, PRD 83 (2011) 052005)

October 4-9, 2015

Claudia Glasman (Universidad Autónoma de Madrid)

5

10

С

Α

pass tight cuts

Inclusive photon production

NLO QCD calculations for inclusive photon production

$$\sigma_{pp o \gamma + X} = \sum_{i,j,a} \int_0^1 dx_1 \; f_{i/p}(x_1, \mu_F^2) \int_0^1 dx_2 \; f_{j/p}(x_2, \mu_F^2) \; \hat{\sigma}_{ij o \gamma a} + \sum_{i,j,a,b} \int_{z_{\min}}^1 dz \; D_a^{\gamma}(z, \mu_f^2) \int_0^1 dx_1 \; f_{i/p}(x_1, \mu_F^2) \int_0^1 dx_2 \; f_{j/p}(x_2, \mu_F^2) \; \hat{\sigma}_{ij o ab}$$

- The calculations include NLO corrections for direct-photon and fragmentation and implement the photon isolation requirement at "parton" level
- Corrections for hadronisation and underlying event needed ($E_{
 m T}^{
 m iso}$ calculation)
- Theoretical uncertainties: higher orders, PDF-induced uncertainty, uncertainty on α_s and on non-perturbative corrections

JETPHOX (S. Catani et al, JHEP 0205 (2002) 028)

October 4-9, 2015

Inclusive isolated photons: testing pQCD

 $pp
ightarrow \gamma + \mathrm{X}$: inclusive isolated-photon cross sections

- Photon selection: $E_{\rm T}^{\gamma}\!>\!100$ GeV and $|\eta^{\gamma}|\!<\!2.37$ excluding the region $1.37\!<\!|\eta^{\gamma}|\!<\!1.52$
- \bullet Photon isolation: $E_{\mathrm{T}}^{\mathrm{iso}}(R=0.4) < 7~\mathrm{GeV}$
- Theoretical uncertainties:
 - ightarrow terms beyond NLO: 12-20%
 - ightarrow PDFs: 5~(15)% at $E_{\mathrm{T}}^{\gamma}\sim 100~(900)$ GeV
 - \rightarrow value of α_s : 4.5% in average
 - \rightarrow NP corrections: negligible
- Comparison to NLO predictions (JETPHOX)
 - $ightarrow \mu_R = \mu_F = \mu_f = E_{\mathrm{T}}^{\gamma}$; PDFs: CT10, MSTW2008NLO; FF: BFG set II; $\alpha_s(m_Z) = 0.118$
 - \rightarrow consistent with data within uncertainties

 ${\cal L} = 4.6 ~{\rm fb}^{-1}$

Inclusive isolated photons: sensitivity to proton PDFs

$pp ightarrow \gamma + \mathrm{X}$: inclusive isolated-photon cross sections

- The NLO calculations agree with the data up to the highest $E_{\rm T}^{\gamma}$ measured (1 TeV) • Sensitivity to proton PDFs:
 - \rightarrow NLO calculation based on MSTW2008NLO higher than CT10 and closer to data at low $E_{\rm T}^{\gamma}$
 - ightarrow theoretical uncertainties due to PDF become significant at high $E_{
 m T}^{\gamma}$
 - \Rightarrow these measurements have the potential to constrain further the pPDFs

ATLAS Collab, PRD 89 (2014) 052004

 $\mathcal{L} = 4.6~\mathrm{fb}^{-1}$

Impact of inclusive isolated photon measurements at LHC on PDFs

- Study of the impact on the gluon density of existing isolated-photon measurements from a variety of experiments, from $\sqrt{s}=200~{\rm GeV}$ up to $7~{\rm TeV}$
 - → those at LHC are the most constraining datasets
 - ightarrow reduction of gluon uncertainty up to 20% localised in the range $x \approx 0.002$ to 0.05
 - ⇒ improved predictions for low mass Higgs production in gluon fusion:

PDF-induced uncertainty decreased by 20%

(See Peter Bussey's talk)

ATLAS Collab, ATL-PHYS-PUB-2013-018

D d'Enterria and J Rojo (NPB 860 (2012) 311)

Х

October 4-9, 2015

Photon+jet production

ISMD2015

Isolated photons in association with jets: testing colour dynamics

 $pp
ightarrow \gamma + \mathrm{jet} + \mathrm{X}$: isolated-photon plus jet cross sections

 $\mathcal{L} = 37 \text{ pb}^{-1}$

- Jet identification: anti- k_t algorithm with R=0.6
 - (see Nuno Anjos's talk)
- ullet At least one jet with $p_{
 m T}^{
 m jet} > 40$ GeV and $|y^{
 m jet}|\!<\!2.37$
- Photon selection: $E_{\rm T}^{\gamma} > 45$ GeV and $|\eta^{\gamma}| < 2.37$ excluding the region $1.37 < |\eta^{\gamma}| < 1.52$ and $E_{\rm T}^{\rm iso} < 4$ GeV
- Additional requirements for $d\sigma/dm^{\gamma
 m j}$: $|\cos heta^{\gamma
 m j}| < 0.83$ and $|\eta^{\gamma} + y^{
 m jet}| < 2.37$
- Experimental uncertainties $\approx 10\%$ (dominated by jet energy scale)
- Theoretical uncertainties $\approx 10\%$ (dominated by terms beyond NLO)
- Comparison to NLO predictions (JETPHOX)
 - $\rightarrow \mu_R = \mu_F = \mu_f = E_T^{\gamma}$; PDFs: CTEQ6.6, CT10, MSTW2008NLO; FF: BFG set II; $\alpha_s(m_Z) = 0.118$; corrected for non-perturbative effects
 - \rightarrow good description of data

11

- Sensitivity to QCD dynamics:
 - \rightarrow shape of data much closer to DP than to F processes \rightarrow consistent with dominance of processes in which a quark is being exchanged
 - \Rightarrow validity of the description of the dynamics of isolated-photon plus jet production in pp collisions at $\mathcal{O}(\alpha \alpha_s^2)$

ATLAS Collab, NPB 875 (2013) 483

- Measurement of $d\sigma/d|\cos heta^{\gamma {f j}}|$ without additional requirements
- Good description of data by LO and NLO pQCD
- Understanding the photon+jet background in terms of pQCD:
 - \rightarrow precise understanding of this background both in normalisation and shape
 - \Rightarrow useful for tuning the Monte Carlo models

ATLAS Collab, NPB 875 (2013) 483

Photon pair production

Isolated photon pairs: understanding the QCD background

$pp ightarrow \gamma \gamma + { m X}$: isolated photon-pair cross sections

 $\mathcal{L}=4.9~\text{fb}^{-1}$

- → both models underestimate normalisation of data due^m to missing higher-order contributions
- ightarrow PYTHIA describes $m_{\gamma\gamma}$, except at low values, better than SHERPA
- \rightarrow good description at low $p_{T,\gamma\gamma}$ thanks to soft-gluon resummation
- \rightarrow SHERPA describes $p_{T,\gamma\gamma}$ overall thanks to additional tree-level higher orders

ATLAS Collab, JHEP 01 (2013) 086

14

 $E_{\mathrm{T}}^{\mathrm{iso}} < 4 \,\mathrm{GeV}$

• $\Delta R^{\gamma\gamma} > 0.4$

Isolated photon pairs: understanding the QCD background

$pp \rightarrow \gamma \gamma + X$: isolated photon-pair cross sections

 $\mathcal{L}=4.9~{
m fb}^{-1}$

- ightarrow 2 γ NNLO: is closest to data, but still below in regions where the fragmentation contribution is more significant
- Sensitivity to higher orders:
 - ⇒ improved calculations are needed to understand fully diphoton production

ATLAS Collab, JHEP 01 (2013) 086

Photon production @ 13 TeV

Photon and photon+jet production with the ATLAS detector

Preview: inclusive isolated photon production @ 13 TeV

 $pp
ightarrow \gamma + \mathrm{X}$: inclusive isolated-photon distributions

• Photon selection: $E_{ m T}^{\gamma}\!>\!125$ GeV and $|\eta^{\gamma}|\!<\!2.37$ excluding the region $1.37\!<\!|\eta^{\gamma}|\!<\!1.56$

• Photon isolation: $E_{
m T}^{
m iso}(R=0.4) < 4.8~{
m GeV} + 4.2\cdot 10^{-3} imes E_{
m T}^{\gamma}$

- Clear observation of isolated photon signal at 13 TeV
- Comparison to normalised LO MC predictions
 - \rightarrow good description of data by SHERPA 2.1

(see Nicola Orlando's talk) ATLAS Collab, ATL-PHYS-PUB-2015-016

Claudia Glasman (Universidad Autónoma de Madrid)

 $\mathcal{L}=6.4~{
m pb}^{-1}$

Preview: photon pair production @ 13 TeV

$pp ightarrow \gamma \gamma + \mathrm{X}$: isolated photon-pair distributions

• Clear observation of isolated photon-pair signal at 13 TeV (see Nicola Orlando's talk) ATLAS Collab, ATL-PHYS-PUB-2015-020

Summary

- Exploration of isolated photon production in pp collisions up to $E_{\rm T}^{\gamma} \sim 1$ TeV \Rightarrow additional experimental information on the gluon density in the proton
- Measurements of photon+jet and diphoton production
 - \Rightarrow test of colour dynamics and understanding of background to $H \to \gamma \gamma$ in terms of pQCD
- Overall, perturbative QCD succeeds in describing the data!
 - ... new results at 8 and 13 TeV forthcoming...

Back-up slides

 \rightarrow The third requirement avoids the bias due to $E_{\rm T}^{\gamma}>45~{\rm GeV}$ in the $(|\cos\theta^{\gamma {\bf j}}|,m^{\gamma {\bf j}})$ plane

ATLAS Collab, NPB 875 (2013) 483